Measurement of the charge asymmetry in top quark pair production in pp Collisions at s=8TeV using a template method

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurement of the charge asymmetry in top quark pair production in \(pp \) collisions at \(\sqrt{s} = 8 \) TeV using a template method

V. Khachatryan et al.\(^a\)
(CMS Collaboration)
(Received 16 August 2015; published 18 February 2016)

The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 fb\(^{-1}\), were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is \(A_t^\pm = \{0.33 \pm 0.26(\text{stat}) \pm 0.33(\text{syst})\}\% \), which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.

DOI: 10.1103/PhysRevD.93.034014

I. INTRODUCTION

The top quark is the heaviest particle in the standard model (SM) and the only fermion with a mass on the order of the electroweak scale [1]. Deviation of its production or decay properties from the SM predictions could signal physics beyond the SM. Several proposed extensions of the SM include heavy mediators of the strong interaction with axial coupling to quarks, collectively referred to as axigluons [2]. Top quark pair production in axigluon-mediated quark-antiquark annihilation can exhibit a forward-backward asymmetry that depends on the invariant mass of the system, similar to the asymmetry in fermion pair production mediated by Z bosons [3]. These types of models have been leading candidates for accommodating the behavior of \(t\bar{t} \) production in proton-antiproton collisions observed by FNAL Tevatron experiments based on about half of their full data set (5 fb\(^{-1}\)) [4,5]. Since analyses of the full Tevatron data set (10 fb\(^{-1}\)) indicate smaller values of asymmetry [6,7], and since recently improved SM-based theoretical calculations [8,9] predict higher values of the asymmetry than previous calculations, the discrepancy between the SM and experimental observations has been greatly reduced. Measurements of dijet production [10–12] have constrained the range of axigluon masses and couplings [13], but the constraints are not applicable to models in which axigluon-produced dijet resonances are much broader than the experimental resolution, or which include multiparticle final states [14]. Precise measurement of the charge asymmetry in top quark pair production remains one of the best ways to test the limits of validity of SM predictions.

Experiments at the CERN LHC have reported values of charge asymmetry in top quark pair production [15–19] consistent with SM predictions [8,9]. Corroboration of results from experiments at the Tevatron using measurements at the LHC is complicated by several differences between the two colliders. First, while at the Tevatron the majority of the \(t\bar{t} \) events are produced via quark-antiquark annihilation, at the LHC the \(t\bar{t} \) production is dominated by charge-symmetric gluon fusion, \(gg \rightarrow t\bar{t} \). Second, collisions at the LHC are forward-backward symmetric, so observation of a charge asymmetry in \(t\bar{t} \) production via annihilation of a valence quark and a sea antiquark, \(q\bar{q} \rightarrow t\bar{t} \), relies on the statistical expectation that the system be boosted in the direction of the quark momentum. Any difference in top quark and antiquark affinity for the initial quark or antiquark momentum will consequently result in more forward production of one and more central production of the other. This forward-central \(t\bar{t} \) charge asymmetry at the LHC is diluted relative to the forward-backward \(t\bar{t} \) charge asymmetry at the Tevatron, since the LHC colliding system does not always have a boost in the expected direction. Third, a significant portion of LHC \(t\bar{t} \) events are due to (anti)quark-gluon initial states, \(gg(q\bar{q}) \), which are charge asymmetric in number density as well as momentum, and which also contribute to the final-state forward-central \(t\bar{t} \) asymmetry. Despite these complications, the large number of \(t\bar{t} \) events produced at the LHC makes measurement of charge asymmetry competitive with the Tevatron measurements as a test of the SM.

The measurement of \(t\bar{t} \) asymmetry presented in this paper utilizes a template technique based on a parametrization of the SM. The technique differs from previous \(t\bar{t} \) asymmetry measurements [4–7,15–19], which are based on unfolding the effects of selection and resolution in the observable distribution. Reference [19] in particular...
analyzes the same data set, but also differs in selecting fewer events with higher purity as a result of more restrictive jet transverse momentum criteria, and in the methods used to reconstruct $t\bar{t}$ kinematics and determine the sample composition.

The template technique is presented in Sec. II. Data from proton-proton collisions at $\sqrt{s} = 8$ TeV were collected in 2012 by the CMS experiment, described in Sec. III. Event selection, reconstruction of $t\bar{t}$ kinematics, and a population discriminant are described in Sec. IV. The details of the model used to obtain the result are given in Sec. V, and the result is presented in Sec. VI. The analysis is summarized in Sec. VII.

II. ANALYSIS STRATEGY

Charge asymmetry in $t\bar{t}$ production can be defined for an observable X that changes sign under the exchange $t \leftrightarrow \bar{t}$. If X is distributed with a differential cross section $d\sigma/dX$, its probability density is

$$\rho(X) = \frac{1}{\sigma} \frac{d\sigma}{dX}. \quad (1)$$

This can be expressed as a sum of symmetric (ρ^+) and antisymmetric (ρ^-) components,

$$\rho^\pm(X) = [\rho(X) \pm \rho(-X)]/2. \quad (2)$$

Statistical kinematic differences between top quarks and antiquarks can be summarized in a charge asymmetry,

$$A_X^Y = \int_{0}^{\tilde{X}} \rho(X) dX - \int_{-\tilde{X}}^{0} \rho(X) dX = 2 \int_{0}^{\tilde{X}} \rho^-(X) dX, \quad (3)$$

where the observable’s maximum value \tilde{X} may be finite or infinite. Previous LHC analyses [15–19] defined a $t\bar{t}$ charge asymmetry A_c^Y, based on the difference in absolute rapidities of the top quark (y_t) and antiquark ($y_{\bar{t}}$),

$$\Delta|y|_{t\bar{t}} = |y_t| - |y_{\bar{t}}|. \quad (4)$$

For the technique described in this paper, it is desirable that the observable X be bounded. The hyperbolic tangent is a symmetric and monotonic function, so the transformed observable

$$Y_{t\bar{t}} = \tanh \Delta|y|_{t\bar{t}} \quad (5)$$

has the asymmetry A_Y^X and is also bounded.

Charge asymmetries at production can only be determined from observed data distributions using an extrapolation based on a particular model. Past measurements were extrapolated using an unfolding technique, which relies on a model for the selection efficiencies and reconstruction effects [4–7,15–19]. An alternative extrapolation discussed in this paper uses a model to derive template distributions for the symmetric and antisymmetric components, ρ^\pm.

In the present analysis, the next-to-leading-order (NLO) POWHEG event generator (version 1.0) [20] is used in association with the CT10 [21] parton distribution functions (PDFs) as a base model to construct the symmetric and antisymmetric components of the probability density $\rho(X)$ for an observable X. These distributions are represented as symmetrically binned histograms, given as vectors \tilde{x}^\pm with a dimensionality equal to the number of bins. A generalized model with a single parameter α can be

FIG. 1. The (top) symmetric \tilde{x}^+ and (bottom) antisymmetric \tilde{x}^- components of the binned probability distributions in the observable $Y_{t\bar{t}}$, constructed using POWHEG [20] with CT10 PDFs [21], for $t\bar{t}$ production from gg, $q\bar{q}$, gq, and qg initial states.
TABLE I. The $\bar{t}t$ initial-state fractions and charge asymmetries in the observable $Y_{t\bar{t}}$, calculated with POWHEG using the CT10 PDFs. The statistical uncertainty in the last digits is indicated in parentheses.

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Fraction (%)</th>
<th>\hat{A}_X^α (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gg</td>
<td>65.2</td>
<td>$-0.059(25)$</td>
</tr>
<tr>
<td>$q\bar{q}$</td>
<td>13.4</td>
<td>$2.95(6)$</td>
</tr>
<tr>
<td>gg</td>
<td>18.2</td>
<td>$1.17(5)$</td>
</tr>
<tr>
<td>$\bar{q}g$</td>
<td>3.2</td>
<td>$-0.21(11)$</td>
</tr>
<tr>
<td>pp</td>
<td>100.0</td>
<td>$0.563(20)$</td>
</tr>
</tbody>
</table>

constructed from a linear combination of the base model components,

$$\bar{x}^\alpha = \bar{x}^\alpha + a\bar{x}^-.$$

The measurement strategy is to find the value of α that best fits the observations. The base model charge asymmetry \hat{A}_X^α is given by Eq. (3). The charge asymmetry observed in data is then equal to that of the base model scaled by the parameter α:

$$A_X^\alpha(\alpha) = a\hat{A}_X^\alpha.$$

Figure 1 presents the \bar{x}^\pm distributions in gg, $q\bar{q}$, and $qg(\bar{q}g)$ initial states for $X = Y_{t\bar{t}}$, before the event reconstruction and selection are applied, and the composition and intrinsic charge asymmetries of each initial state are listed in Table I. Imperfect detector resolution, event reconstruction, and selections can result in distributions of the reconstructed observable Y_{rec}^α that differ from those in $Y_{t\bar{t}}$. For this reason, the symmetric and antisymmetric templates, \bar{x}_{rec}^α, are constructed using POWHEG-generated events that are fully reconstructed and pass the selection criteria. Studies of simulated events show that event reconstruction and selection may amplify or dilute an underlying asymmetry in the Y_{rec}^α distribution but do not introduce a significant false bias. Thus, the scale parameter α in Eqs. (6), (7) can be determined by a fit to the reconstructed distribution in data,

$$\bar{x}_{data}^\alpha = \bar{x}_{rec}^\alpha + a\bar{x}_{rec}^-.$$

III. CMS DETECTOR AND DEFINITION OF PHYSICS OBJECTS

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors.

The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a fixed time interval of less than 4 μs. The high-level trigger processor farm further decreases the event rate from around 100 kHz to around 400 Hz before data storage. Single-electron and single-muon triggers were used to collect events for this analysis.

The particle-flow event algorithm [22,23] is used to reconstruct and identify each individual particle with an optimized combination of information from the various elements of the CMS detector. Photons and electrons are defined as clusters in ECAL with a requirement that there be a charged-particle trajectory pointing to an electron cluster. The energy of a photon is directly obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of an electron is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track [24]. The momentum of a muon is obtained from the direction and curvature of its combined trajectory in the muon and tracking systems. The energy of a charged hadron is determined from a combination of its momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of a neutral hadron is obtained from the corresponding corrected ECAL and HCAL energy deposits.

For each event, after identification and removal of leptons relevant to the sample selection and particles from additional proton-proton interactions within the same bunch crossing (pileup), hadronic jets are clustered from these reconstructed particles with the infrared- and collinear-safe anti-k_T algorithm, operated with a size parameter R of 0.5 [25]. The jet momentum is determined as the vectorial sum of all particle momenta in this jet, and is found in the simulation to be within 5% to 10% of the true momentum over the whole transverse momentum (p_T) spectrum and detector acceptance. Jet energy corrections are derived from the simulation, and are confirmed with in situ measurements of the energy balance of dijet and photon + jet events [26]. The jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV. An offset correction is applied to jet energies to take into account pileup contributions. Additional selection criteria are applied to each event to remove spurious jetlike features originating from isolated noise patterns in certain
HCAL regions. Jets from b quarks are identified using a discriminant containing information about secondary vertices formed by at least three charged-particle tracks, including the number of associated tracks, the displacement from the collision point, and the vertex mass, which is computed from the tracks associated with the secondary vertex [27].

The missing transverse momentum vector \vec{P}^miss_T is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed particles in an event. Its magnitude is referred to as E^miss_T.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [28].

IV. EVENT SELECTION AND RECONSTRUCTION

Each event is considered under the hypothesis that a top quark and a top antiquark each decay into a bottom quark and a W boson, and that one W boson subsequently decays into a pair of quarks, while the other decays into a neutrino and either an electron or a muon, producing a lepton and jets ($\ell^+\ell^-$ + jets) signature.

Events are selected from data collected from collisions of protons at 8 TeV center-of-mass energy and corresponding to an integrated luminosity of (19.6 ± 0.5) fb$^{-1}$ [29]. Selected events contain at least four jets each with $|\eta| < 2.5$ and $p_T > 20$ GeV, and one isolated electron (muon) with $|\eta| < 2.5$ (2.1) and $p_T > 30$ (26) GeV. Events are also required to have no other electrons ($|\eta| < 2.5$, $p_T > 20$ GeV) or muons ($|\eta| < 2.5$, $p_T > 10$ GeV). A selected event must have an electron with a particle-flow relative isolation I^rel_PF less than 0.1, or a muon with I^rel_PF less than 0.12 [24,30].

Events containing an electron with $0.11 < I^\text{rel}_PF < 0.15$ or a muon with $0.13 < I^\text{rel}_PF < 0.20$ are retained as a control, or sideband, region. The (next-to-) leading jet must have $p_T > 45$ (35) GeV. At least one jet must be b-tagged, as defined by the medium working point of the combined secondary vertex b-tagging discriminant (CSV), which has an efficiency better than about 65% and a misidentification probability of about 1.5% [27]. In total, 326,185 events are accepted with an electron and jets in the final state, hereafter referred to as the e + jets channel, and 340,911 events are accepted in the μ + jets channel.

In addition to $\ell^+\ell^-$ production, several other processes can produce a $\ell^+\ell^-$ signature that passes this selection. In particular, these processes include the production of leptonically decaying W bosons in association with jets (Wj_j), Drell-Yan (DY) production of $\ell^+\ell^-$ pairs from $q\bar{q}$ annihilation in association with jets and in which one lepton is not identified, and the production of single top (St) quarks accompanied by additional jets. Production of quantum chromodynamic multijets (Mj) also contributes to the background. Such events can satisfy the selection if a jet is misidentified as an electron or if a muon produced in the decay of a heavy quark passes the isolation criteria.

More than 65% of selected events contain $t\bar{t}$ pairs.

A. Modeling of signal and background

The detection of generated particles is fully simulated with the Geant4 software [31] using a detailed description of the CMS detector. The samples account for the observed multiplicity of pileup interactions in data. Additional weights are applied after event selection to match the efficiency of triggers and object identification that are measured in a data sample of Z + jets events using a tag-and-probe method [24,30]. The energy difference between each reconstructed jet and its corresponding generated jet is scaled to match the $(\eta'_T$ and p_T-dependent) jet energy resolution in data, as measured using the dijet asymmetry technique [26].

As mentioned, the $t\bar{t}$ events are generated with the NLO POWHEG heavy-quark pair production algorithm, using the CT10 PDFs, and interfaced with PYTHIA (version 6.426) for parton showering and hadronization [32–34]. Events with W or Z bosons in conjunction with 1, 2, 3, or 4 jets are generated with leading-order (LO) MADGRAPH (version 5.1.3.30) [35], using the CTEQ6 PDFs [36] (version L1), and are interfaced with PYTHIA. A dedicated $W + b\bar{b}$ sample is used for investigation of systematic uncertainties. Events with single top quarks or antiquarks are generated with POWHEG using the CTEQ6 PDFs (version M) in the s and t channels [37], and in the tW channel using diagram removal rather than the diagram subtraction method [38].

The Mj background has a very low efficiency to pass the selection, making it difficult to simulate enough selected events, but it has a large enough cross section to make it significant. The Mj background is modeled using the sideband data, subtracting the contributions of simulated processes, which are normalized according to the integrated luminosity and their cross sections and selection efficiencies.

Several alternative models of $t\bar{t}$ production are used to investigate systematic uncertainties and to evaluate the performance of the method. Alternative SM $t\bar{t}$ simulations are generated with MADGRAPH and with MC@NLO (version 3.41) [39] using the CTEQ6 PDFs (versions L1 and M, respectively). Systematic uncertainties related to the factorization and renormalization scales are evaluated using POWHEG $t\bar{t}$ samples in which both scales are increased or decreased simultaneously by a factor of 2 from their nominal values, equal to the event momentum transfer squared; these control samples are processed with the FASTSIM [40] simulation of the CMS detector. A set of six models in which $t\bar{t}$ production kinematics are modified by the presence of new physics are generated with MADGRAPH, and are described in detail in Ref. [13]. The models are chosen to have parameters not yet excluded.
by other experimental constraints. The set includes a model with an added complex gauge boson Z' [41] with a mass of 220 GeV and a coupling to right-handed up-type quarks. Other models in the set include parametrized color-octet vector bosons (axigluon) models [2], in which the axigluon has nonzero mass and chiral couplings. Three models include a light axigluon with a 200 GeV mass and coupling characterized as right, left, or axial. Two models include a heavy axigluon with a 2 TeV mass and right or axial coupling.

B. Reconstruction of top quarks

Top quarks are reconstructed using the most likely assignment of the reconstructed jets to the $t\bar{t}$ decay partons. Jet four-momenta are corrected according to their parton assignment and a kinematic fit, which uses the known top quark and W boson masses [1]. The neutrino momentum is calculated analytically [42]. The top quark and antiquark four-momenta are found by summing the four-momenta of their respective decay products. The charge of the leptonically decaying top quark is determined by that of the electron or muon, while the top quark that decays into jets is assumed to be of the opposite charge.

All jet assignments are considered in selecting the assignment of maximum likelihood. The selection ensures that the number of jets in the event N_j is at least four. There are $N_c = \frac{1}{2}N_j!(N_j-4)!$, or a minimum of 12, possible jet assignment combinations. Each assignment is represented by a tuple $(a, b, c, d, \{x\})$, where a represents the b jet associated with $t \rightarrow b\ell\nu_\ell$ decay; b represents the b jet associated with $t \rightarrow bq\bar{q}$ decay; c and d represent the two jets from hadronic W boson decay, ordered by p_T; and $\{x\}$ represents any additional jets in the event, ordered by p_T. The correct assignment in simulation is designated $(\hat{a}, \hat{b}, \hat{c}, \hat{d}, \{\hat{x}\})$.

The scale factors for correcting the energy of the jets from the reconstruction to the parton level are obtained from $\tilde{t}\bar{t}$ simulation, following the event selection, for b jets from top quark decay, jets from W boson decay, and other jets. Corrections are found as a function of p_T in three bins of absolute pseudorapidity, with upper bin boundaries at $|\eta| = 1.131, 1.653,$ and 2.510, corresponding to the calorimeter barrel, transition, and endcap regions. The corrections, shown in Fig. 2, are applied to the measured jet energies according to the assignment.

The likelihood of a given jet-to-parton assignment i is

$$L_i = L_i^{\text{CSV}}L_i^{\text{MSD}}L_i^{\tau},$$

FIG. 2

The median value of the logarithm of the ratio of parton energy to measured energy, as a function of measured p_T in three bins of $|\eta|$, for (left) b jets from top quark decay, (center) jets from W boson decay, and (right) other jets.

FIG. 3

The conditional probability densities of the CSV b-tagging discriminant from simulation for jets from b quarks, jets from W boson decay, and other jets.
where L_i^{CSV} is the likelihood of the jet b-tagging discriminants, LR_{MSD}^t is the likelihood ratio of the invariant masses of jet combinations associated with $t \to bq\bar{q}$ decays, and LR^χ is the likelihood ratio of the χ^2 associated with the products from $t \to b\ell\nu_\ell$ decays.

The CSV b-tagging discriminant associates a value β with each jet. The conditional CSV probability densities $B = \rho(\beta | \hat{a}, \hat{b})$, $Q = \rho(\beta | \hat{c}, \hat{d})$, and $\mathcal{N} = \rho(\beta | \{\hat{x}\})$ are shown in Fig. 3. The likelihood of a given jet assignment i, considering the associated CSV values $\{\beta\}$, is

$$L_i^{\text{CSV}} = B(\beta_a)B(\beta_b)Q(\beta_c)Q(\beta_d) \prod_{j \in \{x\}} \mathcal{N}(\beta_j).$$ \hspace{1cm} (10)

The jet invariant masses associated with $t \to bq\bar{q}$ decays are m_{bcd} and m_{cd}, with parton-level jet corrections applied.
based on the assignment. Their two-dimensional probability distribution for correct assignments is shown in Fig. 4. The mean and variance of this distribution are calculated after removing the tail of the distribution, defined as the lowest-valued bins which integrate to a 1% probability, in order to find a Gaussian approximation. Contours of the approximation, in standard deviations, are also shown in Fig. 4. The distance of a point from the center of this Gaussian function, expressed in units of standard deviations, is denoted by “mass standard deviations” (MSD). Probability distributions in MSD for correct and incorrect assignments, and their ratio LR_{MSD}, are shown in Fig. 4.

The momentum of the neutrino associated with the leptonically decaying top quark is calculated according to Ref. [42] using \vec{p}_{miss} and the four-momenta of the charged lepton and jet a. Correct and incorrect assignments of jet a are discriminated using the test statistic

$$\chi^2_a = \mathbf{d}^T \sigma^{-2} \mathbf{d},$$ \hspace{1cm} (11)$$

where σ^2 is the covariance matrix for \vec{p}_{miss}, derived from the momentum uncertainties of the reconstructed objects in the event, and \mathbf{d} is the difference vector in the transverse plane between \vec{p}_{miss} and the neutrino momentum solution. The distributions of the square root of χ^2_a for correct and incorrect assignments of jet a, and their ratio LR_{τ^*}, are shown in Fig. 4.

Of the selected $t\bar{t}$ events, about half contain reconstructed jets corresponding to all four $t\bar{t}$ decay partons. In about 60% of those events, the assignment with the maximum likelihood is also the correct assignment.

1. Kinematic fitting procedure

The energy resolution of jets corresponding to the most probable assignment can be improved beyond the intrinsic resolution of the CMS detector using the constraints from the masses of the top quark and W boson. These constraints are applied in two stages. First, jet four-momenta p_i are scaled to $\hat{p}_i = (1 + \delta_i)p_i$ with the free parameters δ_i, for i equal to b, c, or d, in the minimization of the test statistic

$$\chi^2_{bcd} = \left(\frac{m_w - \hat{m}_{bcd}}{\Gamma_w/2} \right)^2 + \left(\frac{m_t - \hat{m}_{bcd}}{\Gamma_t/2} \right)^2 + \sum_{i=bcd} \left(\frac{\delta_i}{r_i} \right)^2.$$

Here, r_i are the p_T- and η-dependent relative jet energy resolutions σ_E/E, and \hat{m}_{bcd} and \hat{m}_{bcd} are the invariant masses calculated with the scaled jet four-momenta. The mass and width parameters used for the W boson and top quark are $m_w = 80.4$ GeV, $m_t = 172.0$ GeV, $\Gamma_w = 2$ GeV, and $\Gamma_t = 13$ GeV. The values of Γ_t and Γ_w represent the empirical resolution of the reconstructed particle masses for a single event, rather than the natural particle widths. The momentum and energy of the top quark that decays into jets are given by $\sum_{i=bcd} \hat{p}_i$. In the second stage, the four-momentum of jet a is scaled to $\hat{p}_a = (1 + \delta_a)p_a$ with the free parameter δ_a, to minimize the test statistic χ^2_a from Eq. (11). At each step of this minimization, χ^2_a is calculated with the charged-lepton four-momentum, the candidate \hat{p}_a, and \vec{p}_{miss} corrected for the scaling of the a, b, c, and d jets. The neutrino momentum associated with the minimized χ^2_a is summed with the corresponding \hat{p}_a and the charged lepton four-momentum to find the energy and momentum of the leptonically decaying top quark.

C. Discrimination among three populations

To measure the sample composition in the data after the event selection, we construct a likelihood discriminant designed to distinguish among populations of events from three leading processes: $t\bar{t}$, M_j, and Wj, denoted by G_1, G_2, and G_3, respectively, in the following generalized construction. As will be discussed in Sec. V, the contributions from S and DY are constrained to those predicted by their SM cross sections. The likelihood that an event belongs to population G is $L_G = \prod_i e_G^i(V_i)$, where $\{V_i\}$ is a set of random variables with probability densities e_G^i. For independent $\{V_i\}$, the likelihood ratio L_{G_i}/L_{G_1} is more discriminating than any single constituent variable [43]. One can construct a likelihood-ratio-based discriminant

$$\Delta = \text{Arg}(L_{G_1} + e^{2i\pi/3}L_{G_2} + e^{-2i\pi/3}L_{G_3})/\pi.$$ \hspace{1cm} (13)$$

![FIG. 5. The angle $\pi\Delta$ of the resultant sum of three vectors spaced at equal angles, in which the magnitude of each is the likelihood of the respective population. The dashed arrows are translations of the $e^{2i\pi/3}$ and $e^{-2i\pi/3}$ vectors which illustrate the construction of the sum. The circle is shown to indicate the relative scale.](image-url)
the principal value of which is bounded periodically on \((-1, 1]\) and is symmetric under exchange of any two of the three populations. Figure 5 illustrates the construction. Populations \(G_1, G_2,\) and \(G_3\) tend to concentrate near Delta equal to 0, 2/3, and \(-2/3\), respectively.

Three observables are used to construct the likelihoods for the discriminant. The first is the transverse mass
\[
M_T = \sqrt{2 \ell_T E_T^{\text{miss}} (1 - \cos \phi)},
\]
where \(\ell_T\) is the magnitude of the charged lepton \(p_T\), \(\phi\) is the azimuthal angle between the charged lepton momentum and \(\vec{p}_T^{\text{miss}}\), and \(E_T^{\text{miss}}\) is the
least one jet assignment is the correct one, defined as $P_{\text{MSD}} = \sum L_{ji}^{\text{MSD}}/(N_c + \sum L_{ji}^{\text{MSD}})$, where N_c and L_{ji}^{MSD} are defined in Sec. IV B. The third is the probability from the CSV b-tagging discriminant that at least one jet assignment is the correct one, defined as

$$P_{\text{CSV}} = \frac{e \sum L_{ji}^{\text{CSV}}}{e \sum L_{ji}^{\text{CSV}} + (1 - e)N_c \prod \lambda_{ij} N_j(\mu_j)}, \quad (14)$$

where L_{ji}^{CSV} and N_j are defined in and before Eq. (10), and the prior probability that at least one assignment is correct is set to $e = 0.05$. A value of $e = 0.05$ is chosen because it results in a more balanced distribution of P_{CSV} than, for example, a flat prior with $e = 0.5$. We found these observables to be highly discriminating and mostly independent of each other.

The probability distribution for each population is shown as a function of the discriminant and each of its input observables in Fig. 6. The M_j probability distributions for the inputs are calculated using fixed SM cross sections, as determined by the simulations, for the subtracted $t\bar{t}$ and Wj contributions.

V. MEASUREMENT PROCEDURE

A two-stage maximum-likelihood fit is employed to sequentially measure the sample composition, using the Δ distribution; and the charge asymmetry, using the Υ_{rec} distribution.

The sample composition is determined independently for each lepton channel by fitting a model to the observed distribution N_{ji}' in the discriminant Δ. Normalized five-bin templates in Δ are constructed from the selected events for each of the simulated processes, including $t\bar{t}$, Wj, St, and DY, in both the signal and sideband regions. The total number of events expected in each region from simulated process j is the product of the integrated luminosity L, the cross section σ_{ji}, and the selection efficiency. The selection efficiencies are taken directly from simulation. Each cross section is parametrized by the relative change $\delta_{\bar{t}}$ from the nominal value $\delta_{\bar{t}}$. The integrated luminosity is parametrized by the relative change δ_{rec} from the measured central value. The M_j distribution in Δ is determined at each iteration of the fit by subtracting the sideband contributions of simulated processes from the sideband region in data, and then rescaling this distribution by a positive parameter P_{MSD}^{Δ}. The total number of expected events in each bin, λ_{i}', is the sum of the expected contributions from the $t\bar{t}$, Wj, Mj, St, and DY processes. Parameters δ_{rec}, δ_{St}, and δ_{DY} are held fixed to zero or to nonzero values when investigating systematic uncertainties. The sample composition is determined by finding values of the free parameters of the $\{F_{Mj}, F_{\text{MSD}}^{Mj}, \delta_{\bar{t}}, \delta_{Wj}\}$ that maximize the product of the Poisson likelihoods over the bins, given observations N_{ji}' and expectations λ_{i}'. The fit is implemented using RooFit [44].

The charge asymmetry is determined from a fit to the five-bin distribution in Υ_{rec}, based on the same model. With the sample composition parameters held fixed, and following Eq. (8), the POWHEG $t\bar{t}$ model is extended by introducing a new free parameter α to provide changes in the relative magnitudes of the symmetric and antisymmetric components of Υ_{rec}, shown in Fig. 7. The difference in shape of the e + jets and μ + jets templates is a result of the different rapidity coverage between the two lepton flavors.
The modeled charge asymmetry is that of the $t\bar{t}$ base model, \hat{A}_c^v, scaled by α,

$$A_c^v = \alpha \hat{A}_c^v.$$ \hspace{1cm} (15)

The charge asymmetry in the data is estimated by finding the value of α that maximizes the product of the Poisson likelihoods over the bins. The results from the independent measurements in both lepton channels are combined before evaluating the systematic uncertainties.

A. Performance and calibration

The performance of the method is checked on simulated samples constructed using $t\bar{t}$ events based on the extended POWHEG model as well as the alternative $t\bar{t}$ simulations described in Sec. IVA. The extended POWHEG model is checked using various values of the parameter α by measuring pseudoexperiments generated with Poisson variations of the best-fit model, mimicking fluctuations expected in data. The statistical uncertainty measured in 68% of the pseudoexperiments is greater than the absolute difference between the measured and expected values. The distribution in statistical uncertainty in A_c^v, with an expected value of 0.258%, is shown in Fig. 8.

The alternative $t\bar{t}$ simulations are checked using pseudoexperiments with the sample composition of the measured data, constructed with fixed background and Poisson-varied signal templates, to find the uncertainty from the sample statistics of each alternative model. Identical background samples are used in constructing the pseudodata and in constructing the measurement model, so statistical uncertainty in the background samples does not contribute to uncertainty in the calibration. Figure 9 shows the difference between the expected measurement and the input charge asymmetries, or the bias, for each model. The bias for the extended POWHEG models is negligible. The bias of the method when applied to samples produced using the SM-based generators MADGRAPH and MC@NLO is compatible with the systematic uncertainty in A_c^v assigned to model-related sources, represented by the shaded band in the plot. Model-related systematic uncertainty sources consist of simulation statistics, modeling of $t\bar{t}$ production, PDFs, and renormalization and factorization scales. Similar calibrations of the beyond-SM alternatives of $t\bar{t}$ production considered in this study all show biases statistically compatible with zero.

B. Systematic uncertainties

Systematic uncertainties in α are investigated after the statistical combination of the two channels by repeating the measurement with variations in the parameters or the distributions. The second stage of the fit is repeated with

![Figure 8](image.png)

FIG. 8. The distribution of the statistical uncertainty in A_c^v from measurements using pseudoexperiments, with an expected value of 0.258%. The statistical uncertainty extracted from the data is marked by the arrow.

![Figure 9](image.png)

FIG. 9. The bias in the measured charge asymmetry for SM simulations and alternative $t\bar{t}$ models, based on extended POWHEG SM templates, versus the charge asymmetry in each sample. The beyond-SM samples are MadGraph simulations of Z' bosons and axigluons with masses of 200 GeV and 2 TeV. Uncertainty in the bias of the extended POWHEG model is dominated by the number of pseudoexperiments used, while the uncertainty in the bias of each alternative model is dominated by the statistical uncertainty in the sample. The hatched area shows the systematic uncertainty in the measurement of A_c^v from sources related to the modeling, including simulation statistical uncertainty, renormalization and factorization scales, choice of $t\bar{t}$ generator, top quark mass, and PDFs.
sample composition parameters varied independently to the upper and lower bounds of their 68% confidence intervals. Parameters for the integrated luminosity and the St and DY cross sections are varied similarly, but both fit stages are repeated. The effects of statistical uncertainty in the sideband distributions of the data and the simulations are investigated with ensembles of alternative templates, generated by varying the originals according to Poisson statistics. Uncertainty in the jet energy scale and jet energy resolutions are investigated by repeating the reconstruction using rescaled jet energies, according to the resolutions are investigated by repeating the reconstruction with scaled discriminant values. The PDFs are varied by event reweighting. The uncertainty in the shape of the M_j templates is dominated by the statistical uncertainty in the data sidebands; the M_j antisymmetric components are statistically compatible with zero asymmetry, and no additional shape systematic is included beyond that of the statistical shape uncertainty.

The magnitudes of the systematic uncertainties are given in Table II. The total systematic uncertainty of 0.33% is comparable to the statistical uncertainty in the measurement, and is dominated by the statistical uncertainty in the shapes of the data sidebands.

TABLE II. Uncertainty in the combined measurement of A_c from systematic sources, ordered by decreasing magnitude.

<table>
<thead>
<tr>
<th>(%)</th>
<th>Source of systematic uncertainty in A_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>Data sideband statistical uncertainty</td>
</tr>
<tr>
<td>0.15</td>
<td>Simulation statistical uncertainty</td>
</tr>
<tr>
<td>0.14</td>
<td>Jet energy scale</td>
</tr>
<tr>
<td>0.14</td>
<td>Renormalization and factorization scales</td>
</tr>
<tr>
<td>0.073</td>
<td>Modeling of b-tagging</td>
</tr>
<tr>
<td>0.037</td>
<td>$\sigma_{\text{St}} (\sigma_i + \sigma_f)$</td>
</tr>
<tr>
<td>0.035</td>
<td>Jet energy resolution</td>
</tr>
<tr>
<td>0.026</td>
<td>Modeling of pileup</td>
</tr>
<tr>
<td>0.023</td>
<td>$Wb\bar{b}$ content</td>
</tr>
<tr>
<td>0.021</td>
<td>Ratio of St cross sections, σ_i/σ_f</td>
</tr>
<tr>
<td>0.021</td>
<td>Modeling of $t\bar{t}$ production</td>
</tr>
<tr>
<td>0.018</td>
<td>PDFs</td>
</tr>
<tr>
<td>< 0.010</td>
<td>$\mathcal{L}, \sigma_{\text{DY}}, \delta_{\text{Wj}}, \text{trigger}, e_\mu, F^e_{M_j}, \delta_{ij}, \alpha_s$</td>
</tr>
<tr>
<td>< 0.001</td>
<td>Trigger $e_\mu, p_T^e, \text{ID}{e{\mu}}, F^\mu_{M_j}$</td>
</tr>
<tr>
<td>0.33</td>
<td>Total</td>
</tr>
</tbody>
</table>

VI. RESULTS

The measured sample composition is presented in Table III. Figure 10 shows the data from each channel projected along $\Upsilon^{\tiny\text{res}}$ and Δ, overlaid with the results of the fitted model.

Curves of the negative logarithm of the likelihood for both channels are shown in Fig. 11, along with the combined 68% confidence interval for A_c. The predictions of POWHEG, Kühn and Rodrigo [8], and Bernreuther and Si [9] are also plotted. Subfigures of Fig. 11 show the range of the antisymmetric components covered by the models at ±1 standard deviation of the statistical uncertainty. The combined charge asymmetry using both channels is $A_\mathrm{c} = [0.33 \pm 0.26(\text{stat}) \pm 0.33(\text{syst})]\%$, which is tabulated with the predictions in Table IV. The combined uncertainty is 0.42%.

The measured $t\bar{t}$ production charge asymmetry A_c is compatible with another CMS $\sqrt{s} = 8$ TeV measurement [19],

<table>
<thead>
<tr>
<th>$t\bar{t}$</th>
<th>Wj</th>
<th>Mj</th>
<th>St</th>
<th>DY</th>
<th>Total</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>e only</td>
<td>207.1(8)</td>
<td>49.1(9)</td>
<td>50.5(1.1)</td>
<td>14.0</td>
<td>5.4</td>
<td>326.2(1.6)</td>
</tr>
<tr>
<td>μ only</td>
<td>242.6(8)</td>
<td>58.9(6)</td>
<td>18.7(5)</td>
<td>16.5</td>
<td>4.3</td>
<td>340.8(1.1)</td>
</tr>
</tbody>
</table>

Simultaneous fit

| e | 207.1(5) | 49.5(4) | 50.2(6) | 14.0 | 5.4 | 326.2(9) | 326.185 |
| μ | 242.6(6) | 58.8(5) | 18.7(5) | 16.5 | 4.3 | 340.9(9) | 340.911 |
FIG. 10. Sample composition is measured using the discriminant Δ distribution (top), in a model with contributions from $t\bar{t}$, W_j, M_j, and $St+DY$. With the sample composition subsequently fixed, the amplitude of the antisymmetric $t\bar{t}$ contribution is measured in the Υ^{rec}_t distribution, shown decomposed into symmetric (middle) and antisymmetric (bottom) components. The thick line shows the antisymmetric component of the fit model. The measurements are performed independently on the (left) $e + \text{jets}$ and (right) $\mu + \text{jets}$ samples.
which uses an unfolding technique on the same data, and with the most recent Monte Carlo predictions and theoretical calculations. The template method incorporates more information from the model than used in comparable unfolding techniques [15–19] by using the distribution of the antisymmetric component of the probability density. This extra information carries the benefit of reduced statistical uncertainty, at the expense of greater model dependence, reflected in the systematic uncertainty. The contributions to the uncertainty from statistical and systematic sources are comparable in size. Since the systematic uncertainty is dominated by the statistical uncertainty in the templates, it can be reduced in future analyses through increased numbers of events in the simulation and in the sidebands in the data. The uncertainty in the POWHEG prediction arises from systematic uncertainties in the PDFs, the renormalization and factorization scales, and the strong coupling constant. A graphical comparison of the results and predictions is shown in Fig. 12.

TABLE IV. Comparison of charge asymmetry measurements and predictions.

<table>
<thead>
<tr>
<th>Source</th>
<th>A^c_γ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e + jets</td>
<td>0.09 ± 0.34(stat)</td>
</tr>
<tr>
<td>μ + jets</td>
<td>0.68 ± 0.41(stat)</td>
</tr>
<tr>
<td>Combined</td>
<td>0.33 ± 0.26(stat) ± 0.33(syst)</td>
</tr>
<tr>
<td>POWHEG CT10</td>
<td>0.56 ± 0.09</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>0.53 ± 0.09</td>
</tr>
<tr>
<td>Kühn and Rodrigo [8]</td>
<td>1.02 ± 0.05</td>
</tr>
<tr>
<td>Bernreuther and Si [9]</td>
<td>1.11 ± 0.04</td>
</tr>
</tbody>
</table>
VII. SUMMARY

The forward-central \(\bar{t}t \) charge asymmetry in proton-proton collisions at 8 TeV center-of-mass energy has been measured using lepton + jets events from data corresponding to an integrated luminosity of 19.6 fb\(^{-1}\). Novel techniques in top quark reconstruction and background discrimination have been employed, which are likely to be of interest in future analyses. The measurement utilizes a template technique based on a parametrization of the SM. The result, \(A_y = 0.33 \pm 0.26 \text{(stat)} \pm 0.33 \text{(syst)} \)%, is the most precise to date. It is consistent with SM predictions, but does not rule out the alternative models considered.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e e Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and
the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds voor de Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWV-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR Project No. 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, Contract No. C-1845.

MEASUREMENT OF THE CHARGE ASYMMETRY IN TOP...

PHYSICAL REVIEW D 93, 034014 (2016)

11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12 Universidade Estadual Paulista, São Paulo, Brazil
13 Universidade Federal do ABC, São Paulo, Brazil
14 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Universidad de Los Andes, Bogota, Colombia
18 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19 University of Split, Faculty of Science, Split, Croatia
20 Institute Rudjer Boskovic, Zagreb, Croatia
21 University of Cyprus, Nicosia, Cyprus
22 Charles University, Prague, Czech Republic
23 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25 Department of Physics, University of Helsinki, Helsinki, Finland
26 Helsinki Institute of Physics, Helsinki, Finland
27 Lappeenranta University of Technology, Lappeenranta, Finland
28 DSM/IRFU, CEA/Saclay, GIF-sur-Yvette, France
29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33 Georgian Technical University, Tbilisi, Georgia
34 Tbilisi State University, Tbilisi, Georgia
35 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
37 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
38 Deutsches Elektronen-Synchrotron, Hamburg, Germany
39 University of Hamburg, Hamburg, Germany
40 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
41 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
42 University of Athens, Athens, Greece
43 University of Ioannina, Ioannina, Greece
44 Wigner Research Centre for Physics, Budapest, Hungary
45 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
46 University of Debrecen, Debrecen, Hungary
47 National Institute of Science Education and Research, Bhubaneswar, India
48 Panjab University, Chandigarh, India
49 University of Delhi, Delhi, India
50 Saha Institute of Nuclear Physics, Kolkata, India
51 Bhabha Atomic Research Centre, Mumbai, India
52 Tata Institute of Fundamental Research, Mumbai, India
53 Indian Institute of Science Education and Research (IISER), Pune, India
54 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
55 University College Dublin, Dublin, Ireland
56 INFN Sezione di Bari, Bari, Italy
57a Università di Bari, Bari, Italy
57b Politecnico di Bari, Bari, Italy
58a INFN Sezione di Bologna, Bologna, Italy
58b Università di Bologna, Bologna, Italy
59a INFN Sezione di Catania, Catania, Italy
59b Università di Catania, Catania, Italy
59c CSFNSM, Catania, Italy
59d INFN Sezione di Firenze, Firenze, Italy
V. Khachatryan et al.

Univ. di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Roma, Italy
Università di Napoli ‘Federico II’, Roma, Italy
Università della Basilicata, Roma, Italy
Università G. Marconi, Roma, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
Università di Trento, Trento, Italy
INFN Sezione di Pavia, Pavia, Italy
Università di Pavia, Pavia, Italy
INFN Sezione di Perugia, Perugia, Italy
Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore di Pisa, Pisa, Italy
INFN Sezione di Roma, Roma, Italy
Università di Roma, Roma, Italy
INFN Sezione di Torino, Torino, Italy
Università di Torino, Torino, Italy
Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste, Trieste, Italy
Università di Trieste, Trieste, Italy
Kangwon National University, Chunchon, Korea
Korea University, Seoul, Korea
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Chonnam National University, Institut for Universe and Elementary Particles, Kwangju, Korea
Chonbuk National University, Jeonju, Korea
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
P.N. Lebedev Physical Institute, Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Universidad Autónoma de Madrid, Madrid, Spain
Universidad de Oviedo, Oviedo, Spain
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
Istanbul Technical University, Istanbul, Turkey
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas 76798, USA
The University of Alabama, Tuscaloosa, Alabama 35487, USA
Boston University, Boston, Massachusetts 02215, USA
Brown University, Providence, Rhode Island 02912, USA
University of California, Davis, California 95616, USA
University of California, Los Angeles, California 90095, USA
University of California, Riverside, California 92521, USA
University of California, Santa Barbara, Santa Barbara, California 93106, USA
California Institute of Technology, Pasadena, California 91125, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
University of Colorado Boulder, Boulder, Colorado 80309, USA
Cornell University, Ithaca, New York 14853, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
University of Florida, Gainesville, Florida 32611, USA
Florida International University, Miami, Florida 33199, USA
Florida State University, Tallahassee, Florida 32306, USA
Florida Institute of Technology, Melbourne, Florida 32901, USA
University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA
The University of Iowa, Iowa City, Iowa 52242, USA
Johns Hopkins University, Baltimore, Maryland 21218, USA
The University of Kansas, Lawrence, Kansas 66045, USA
Kansas State University, Manhattan, Kansas 66506, USA
Lawrence Livermore National Laboratory, Livermore, California 94551, USA
University of Maryland, College Park, Maryland 20742, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
University of Minnesota, Minneapolis, Minnesota 55455, USA
University of Mississippi, Oxford, Mississippi 38677, USA
University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
State University of New York at Buffalo, Buffalo, New York 14260, USA
Northeastern University, Boston, Massachusetts 02115, USA
Northwestern University, Evanston, Illinois 60208, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
The Ohio State University, Columbus, Ohio 43210, USA
Princeton University, Princeton, New Jersey 08542, USA
University of Puerto Rico, Mayaguez, Puerto Rico 00681, USA
Purdue University, West Lafayette, Indiana 47907, USA
Purdue University Calumet, Hammond, Indiana 46323, USA
Rice University, Houston, Texas 77251, USA
University of Rochester, Rochester, New York 14627, USA
The Rockefeller University, New York, New York 10021, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
dAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
eAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
fAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
gAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
hAlso at Universidade Estadual de Campinas, Campinas, Brazil.
iAlso at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.
jAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
kAlso at Joint Institute for Nuclear Research, Dubna, Russia.
lAlso at Zewail City of Science and Technology, Zewail, Egypt.
mAlso at Ain Shams University, Cairo, Egypt.
nAlso at Helwan University, Cairo, Egypt.
(o) Also at British University in Egypt, Cairo, Egypt.
(p) Also at Université de Haute Alsace, Mulhouse, France.
(q) Also at Tbilisi State University, Tbilisi, Georgia.
(r) Also at Brandenburg University of Technology, Cottbus, Germany.
sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
tAlso at Eötvös Loránd University, Budapest, Hungary.
uAlso at University of Debrecen, Debrecen, Hungary.
(v) Also at Wigner Research Center for Physics, Budapest, Hungary.
wAlso at University of Visva-Bharati, Santiniketan, India.
xAlso at King Abdulaziz University, Jeddah, Saudi Arabia.
yAlso at University of Ruhuna, Matara, Sri Lanka.
zAlso at Isfahan University of Technology, Isfahan, Iran.
Also at University of Tehran, Department of Engineering Science, Tehran, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at Purdue University, West Lafayette, USA.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at Australian Nuclear Science and Technology Organization, New South Wales, Australia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia.
Also at California Institute of Technology, Pasadena, USA.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
Also at National Technical University of Athens, Athens, Greece.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at University of Athens, Athens, Greece.
Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Cag University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Ozyegin University, Istanbul, Turkey.