Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Delaunay, Cédric et al. "Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons." Physical Review D 96, 11 (December 2017): 115002 © 2017 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.96.115002</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 24 19:18:10 EST 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/112613</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

The very high precision of current measurements and theory predictions of spectral lines in few-electron atoms allows us to efficiently probe the existence of exotic forces between electrons, neutrons and protons. We investigate the sensitivity to new spin-independent interactions in transition frequencies (and their isotopic shifts) of hydrogen, helium and some heliumlike ions. We find that present data probe new regions of the force-carrier couplings to electrons and neutrons around the MeV mass range. We also find that, below few keV, the sensitivity to the electron coupling in precision spectroscopy of helium and positronium is comparable to that of the anomalous magnetic moment of the electron. Finally, we interpret our results in the dark-photon model where a new gauge boson is kinetically mixed with the photon. There, we show that helium transitions, combined with the anomalous magnetic moment of the electron, provide the strongest indirect bound from laboratory experiments above 100 keV.

DOI: 10.1103/PhysRevD.96.115002

I. INTRODUCTION

Fundamental interactions of known elementary particles are well described by the Standard Model (SM) of particle physics. Nevertheless, the SM cannot be the complete description of Nature since it does not account for neutrino oscillations, does not provide a viable dark matter candidate and cannot explain the baryon asymmetry of the Universe. Moreover, the SM suffers from several hierarchy problems, such as the stability of the Higgs mass to quantum corrections and the strong CP problem. In addition, it contains intriguing puzzles related to the observed large hierarchies in the charged fermion masses and quark mixing angles. However, none of these pending issues which call for new physics (NP) beyond the SM indicate a specific energy scale at which the associated NP phenomena will manifest themselves. Hence, a broad experimental program must be pursued.

While accelerator-based experiments search directly for new particles over many orders of the mass and couplings, precision low-energy measurements may also reveal indirectly in a complementary approach the existence of new phenomena. Precise atomic physics table-top experiments are promising in this regard. For example, observables which violate discrete symmetries of QED, as in parity-violating transitions [1–8], are a powerful tool to probe NP [9].

Parity-conserving transitions are also interesting probes of NP which, however, require higher theoretical control. Frequency measurements of narrow atomic transitions in heavy elements are possible within a few $\times10^{-16}$ relative accuracy [10,11] thanks to the optical frequency comb technique [12,13]. Moreover, the experimental uncertainty in some systems now reaches the 10^{-18} level [14,15], thus indicating the possibility of significant improvement in the near future. A limitation in translating the experimental precision to a bound on NP is the theory uncertainty, which is by far larger than the experimental precision. However, the high accuracy achieved in frequency measurements of narrow atomic transitions in heavy elements can be exploited to probe NP provided new observables largely insensitive to theory uncertainties are identified. For example, Refs. [16–19] proposed to bound new interactions between neutrons and electrons by testing linearity of King plots [20] of isotope shift (IS) measurements.

The situation is different for atoms and ions with few electrons and a small number of nucleons. There, QED calculations are carried out to high accuracy. For instance, low excited states in helium can be calculated up to $O(\alpha^6)$ corrections, which yields theoretical predictions often more accurate than the measurements, see e.g. Refs. [21,22]. In addition, nuclear finite size effects are also well described thanks to the extraction of the nuclear radius from electron scattering experiments and muonic atom spectroscopy. This allows us to directly compare theory and experiment in order to probe NP interactions [23–26].

In this work we derive new limits on spin-independent NP interactions between the proton/neutron and the electron from optical frequency measurements, as well as from frequency shifts between different isotopes, in hydrogen and helium atoms, heliumlike ions such as lithium and nitrogen. In addition, we constrain new electron-electron interactions via precision spectroscopy of helium and
II. Constraining New Spin-Independent Interactions in Atoms

Consider a new force mediated by a boson ϕ of mass m_{ϕ} and spin $s = 0, 1, 2$ with spin-independent couplings to the electron, proton and neutron y_e, y_p and y_n, respectively. At atomic energies, the exchange of ϕ is described by an effective potential between a nucleus N of charge Z and mass number A and its bound electrons as

$$V_N(r) = \frac{(-1)^{s+1} y_e y_N e^{-m_{\phi} r}}{4\pi r},$$

where $y_N \equiv y_p Z \equiv (A - Z) y_n$ and r is the electron-nucleus distance.

For atoms with more than one electron, like helium, an effective potential between electron pairs is also induced

$$V_e(r_{12}) = \frac{(-1)^{s+1} y_e^2 e^{-m_{\phi} r_{12}}}{4\pi r_{12}},$$

where $r_{12} \equiv |\vec{r}_1 - \vec{r}_2|$ is the distance between electron 1 and electron 2, with \vec{r}_1, \vec{r}_2 describing their positions relative to the nucleus.

The total frequency shift induced by the above potentials for a transition i between atomic states a and b (with $E_b > E_a$) is described by first-order perturbation theory as

$$\delta_{NP} \nu_i^A = (-1)^{s+1} (y_e y_N X_i + y_e^2 Y_i),$$

where X_i and Y_i are overlap integrals with the electronic wave functions depending only on the ϕ boson mass. In this paper, we focus on electronic transitions in helium-like and hydrogen atoms, for which the X_i and Y_i functions are calculated within first-order perturbation theory using nonrelativistic wave functions as detailed in Appendices B and C. While QED calculations rely on much more sophisticated wave functions, the use of the nonrelativistic ones is a sufficient approximation to the dominant NP effects. Helium wave functions are very well approximated by antisymmetrized combinations of hydrogenic wave functions with effective nuclear charges accounting for the electronic screening [27], except for the $2S$ spin-singlet state where an accurate description of the interelectron repulsion requires the use of Hylleraas functions [28,29].

Taking into account the NP contribution in Eq. (3), the theory prediction for the frequency of an electronic transition i in an isotope A is given by

$$\nu_i^A = \nu_{i,0}^A + F_i (r^2)_A + \delta_{NP} \nu_i^A,$$

where $\nu_{i,0}^A$ is the dominant contribution calculated in the pointlike nucleus limit (including spin effects and nuclear polarizability), whereas the second term describes the leading finite nuclear size effects, $(r^2)_A$ being the nuclear charge radius squared and F_i is the field-shift (FS) constant. The IS between two isotopes A and A' for this transition is then described as

$$\nu_i^{AA'} = \nu_{i,0}^{AA'} + F_i (r^2)_{A,A'} + y_e y_n X_i (A - A'),$$

where $\nu_{i,0}^{AA'} \equiv \nu_i^A - \nu_i^{A'}$ and $(r^2)_{A,A'} \equiv (r^2)_{A} - (r^2)_{A'}$. Higher-order effects of nuclear charge radius and finite magnetic radius are not resolvable by the current experimental accuracy [21,30] and are therefore omitted in Eqs. (4) and (5).

Absolute frequencies and IS in hydrogen and helium are calculated to high accuracy in the limit of pointlike nuclei. However, the full theoretical prediction is often limited by the uncertainty related to the finite nuclear size effects. For a comparison between the experimental value and the QED prediction in the point-nucleus limit, we define

$$\Delta_i^A \equiv \nu_i^{A}_{\exp} - \nu_{i,0}^A.$$

The NP contribution generically depends on the three coupling constants, y_e, y_p, and y_n and the mediator mass, m_{ϕ}. At fixed m_{ϕ} the product $y_e y_n$ can be probed independently of y_p from a single IS measurement (for any transition i) using Eq. (5)

$$y_e y_n = \frac{\Delta_i^{AA'} - F_i (r^2)_{A,A'}}{X_i (A - A')}.$$

where $\Delta_i^{AA'} \equiv \Delta_i^A - \Delta_i^{A'}$ using Eq. (6). Hence the NP bound depends on the charge in the mean-square nuclear charge radius, $(r^2)_{A,A'}$, which is measured either in electron scattering or in muonic atom spectroscopy experiments. Whenever applicable, the latter typically yields much more precise values of the charge radii. In principle, the charge radius determination via electron scattering may be affected by NP. However, we find that NP is only noticeable there for large coupling values that are already excluded by more sensitive probes. Hence the charge radius extraction from electron scattering cannot be contaminated by NP. Muonic atom spectroscopy measurements are more sensitive to NP contributions, especially in the keV–MeV mass range, and existing constraints on the $y_e y_n$ coupling product do not rule out the possibility of NP contaminations in this region.
PROBING NEW SPIN-INDEPENDENT INTERACTIONS …

[31–33]. Therefore, for simplicity we will henceforth assume \(Y_p = 0 \).

Alternatively, the charge radius dependence can be eliminated using an IS measurement in a second transition, yielding

\[y_{e\,y} = \frac{F_2 \Delta \alpha - F_1 \Delta \alpha'}{(F_2 X_1 - F_1 X_2) (A - A')} \]

which, besides \(X_{1,2} \), depends only on quantities known theoretically with high accuracy, namely \(F_2/F_1 \) and \(\nu_{i;0}^{A,A'} \). The main drawback of Eq. (8) relative to Eq. (7) is the possible loss of sensitivity when \((F_2 X_1 - F_1 X_2) \to 0 \) [16,19]. The latter is rather severe for all \(m_{\phi} \) when close-by transitions with \(F_1 \approx F_2 \) and \(X_1 \approx X_2 \) are used, for example in transitions involving different states of the same fine-structure multiplet. Another disadvantage of Eq. (8) is represented by how rapidly the sensitivity to \(y_{e\,y} \) weakens at large mass. While \(X_i \propto m_{\phi}^{\alpha_2} \) above \(m_{\phi} \sim O(10 \text{ keV}) \), this leading term cancels out in the difference \((F_2 X_1 - F_1 X_2) \propto m_{\phi}^{\alpha_3} \) [19]. Equation (8) bears resemblance to the method proposed in Ref. [19] for heavy elements. However, there, the less accurate theory calculations for \(\nu_{i;0}^{A,A'} \) are traded for IS measurements between two additional isotope pairs.

NP contributions to the electron-electron and electron-proton interactions cancel out to first approximation in the IS. Thus, they can be probed more efficiently in absolute frequency measurements, despite the lower absolute accuracy. Helium transitions are sensitive to both kinds of interaction. In fact a combination of two frequency measurements can resolve the \(y_{e\,y} \) and \(y_{e}^{2} \) coupling products, thanks to transition-dependent \(X_i, Y_i \) constants in Eq. (3). Hydrogen frequencies are sensitive to electron-proton interactions and have been used previously to probe \(y_{e\,y} \) [23–25]. However, presently unresolved issues related to the well-known proton radius puzzle [34,35] limits the application of hydrogen spectroscopy for constraining new atomic forces. Therefore, we will not use absolute spectroscopy measurements of hydrogen or deuterium as a probe of NP. Instead, we will consider hydrogen-deuterium IS spectroscopy since in this case there is no tension between \(\delta(r^2) \) values extracted from electronic and muonic measurements [36].

III. BOUNDS FROM ISOTOPE SHIFT MEASUREMENTS

Let us first discuss probes of new electron-neutron interactions. We focus here on spectroscopic probes based on IS measurements in helium, heliumlike and hydrogen/deuterium atoms. The comparison of theory to experiment directly probes \(y_{e\,y} \) independently of the presence of a NP coupling to protons. As shown in Table I (a full list of our input values is given in Appendix A), the theory uncertainty (in the point-like nucleus limit) is currently smaller than the experimental error for transitions involving low excited states, and the sensitivity to NP is limited by the experimental determination of charge radius differences. Our results are summarized in Fig. 1 which show the best constraints on

![Figure 1](image)

FIG. 1. Summary of the indirect constraints on a new electron-neutron interaction: isotope shift spectroscopy of helium and hydrogen/deuterium (this work) with the charge radius determined from electron scattering (“e-scat” or Lamb shift in muonic atoms (“muon LS”; comparison with King plot analyses of IS in heavy atoms (Ca+, Yb+) [19,37], fifth force experiments [38,39], electron-neutron scattering [40], neutron-nucleus scattering [41–44] combined [19] with \(a_e \), and globular cluster [45]. The existing bounds are in solid lines, while the projections are in dashed lines. The He projection assumes a combined theory and experimental uncertainty of 100 Hz; the Yb+ projection assumes King linearity at 1 Hz.)
$y_e y_n$, as a function of the mediator mass, arising from transitions in hydrogen and helium-(like) atoms.

For comparison, we also show constraints derived from King linearity in heavy atoms [19] and from other (nontomeric) observables. Those include laboratory constraints resulting from the anomalous magnetic moment of the electron $a_e \equiv (g - 2)/2$ [46,47], neutron scattering on atomic electrons [40] or nuclei [41–44] and fifth force experiments [38,39], as well as astrophysical constraints from SN 987a [48] and globular clusters [45,49–52]. Note that also spectroscopy in molecular ions and antiprotonic helium constrains spin-independent interactions of nucleons [53–56], but it results in weaker bounds than from neutron scattering and is therefore not shown in Fig. 1. Some of these constraints can be evaded in specific models [57–61]. We notice that bounds from few-electron atoms provide the strongest (indirect) constraints in the region above 300 keV where astrophysical bounds lose sensitivity. Note, however, that direct constraints (not shown here) also exist, which are particularly sensitive for $m_\phi > 1$ MeV.

Yet, they strongly depend on the assumed branching ratios for relevant ϕ decay modes, see e.g. Ref. [62] for a review. In the near future a higher sensitivity to NP is still expected in the King linearity test of Yb$^+$ [19] compared to few-electron atom spectroscopy, despite the projected improvements in helium transitions. In addition, it is interesting to notice that very light scalar spin-independent interactions can be tested by macroscopic systems, see e.g. [63–68]. In the following subsections, we discuss in detail the bounds obtained from IS measurements in helium, heliumlike ions and hydrogen/deuterium atoms.

A. Helium and heliumlike isotope shifts

We derive here IS bounds using precision spectroscopy in two-electron atoms. This includes constraints from measurements in helium and heliumlike lithium and nitrogen ions, all of which are presented in Fig. 2, while the strongest one is also reported in Fig. 1 for comparison with constraints from other atoms and different sources.

The most accurate IS in helium are measured within a few kHz uncertainty between $A = 3$, 4 for the $2S - 2S$ [69] and $2P - 2S$ [70,71] transitions around 1557 nm and 1083 nm, respectively. While QED calculations in the point-nucleus limit reached sub-kHz accuracy, the theory prediction for the IS is limited by the charge radius difference $\delta(r^2)_{3,4}$ [21]. The latter can be extracted within a few percent from e-He scattering data [72],

$$\delta(r^2)_{3,4}^{e-scatt} = (1.067 \pm 0.065) \text{ fm}^2.$$ \hfill (9)

Using Eq. (9) as an input for the theory predictions of He IS yields a good agreement between theory and experiment for both transitions, thus allowing to constrain NP electron-neutron interactions.

A higher sensitivity could be reached by combining the two transitions in order to eliminate $\delta(r^2)_{3,4}$. In that case, Eq. (8) results in

$$y_e y_n \approx \frac{(-51 \pm 14) \text{ kHz}}{(5.7 X_{1557} - X_{1083})},$$ \hfill (10)

which is $\sim 4 \sigma$ away from zero. Thus, it is not justified, given such a disagreement, to use the above to set limits on NP. Note, however, that this large deviation is the mere consequence of a known tension between the two transitions which may originate from underestimated uncertainties [21]. Despite this circumstance, it remains interesting to observe that in the case that the tension will be resolved by refined QED calculations and/or measurements, the expected sensitivity to $y_e y_n$ is stronger by a factor ~ 6 relative to the use of $\delta(r^2)_{3,4}^{e-scatt}$. In the (yet implausible) event that the above deviation is an evidence for a new electron-neutron interaction, the latter should be visible in other atomic systems. For instance, Eq. (10) would imply a violation of King linearity in ytterbium ion clock transitions at the $O(100 \text{ Hz})$ level [19].

Alternatively, $\delta(r^2)_{3,4}$ can be extracted with high accuracy from muonic helium spectroscopy. The CREMA collaboration is currently conducting Lamb shift
measurements in muonic He$^+$ aiming at a determination of ^3He charge radii with a relative uncertainty of 3×10^{-4} [73]. Assuming this will result in a $\delta(r^2)_{3,A}$ value consistent with e-He spectroscopy, the sensitivity to NP will hence be limited by the experimental accuracy in helium IS measurements. Moreover, future IS measurements in the $2S - 2S$ transition down to $O(100 \text{ Hz})$ precision are expected [74], with a comparable theory improvement. Hence, this would potentially improve sensitivity to NP effects for that transition by two orders of magnitude. As shown in Fig. 1, this is still weaker than the sensitivity expected from King linearity violation in ytterbium ions, except for deuteron-to-electron mass ratios as well as higher-order corrections to the Lamb shift and nuclear polarizability [81]. Additional IS measurements exist with lower precision, including the $2S - nS/D$ transition series for $n = 8$, 12 states [83–85], and the frequency differences [86]

$$\nu_{LS}^{L} = \nu_{2S-4L} - \frac{1}{4} \nu_{1S-2S},$$

(11)

with $L = S, D$. The latter is constructed such that the leading contribution from Coulomb-like potentials cancels out, thus making it directly sensitive to Lamb shift (LS) corrections. As a result, ν_{LS}^{L} becomes less sensitive to NP with an interaction range longer than the atomic size $\sim a_0 = (am_e)^{-1} \approx (4 \text{ keV})^{-1}$. Since all transitions in the $2S - nS/D$ series have comparable sensitivity to NP, we consider only the $2S - 12D$ transition for illustration.

Here again, the FS contributions are least known theoretically as they are limited by the charge radius difference $\delta(r^2)_{2,1}$ between the deuteron and the proton. The latter can be extracted either from electron scattering data, which yields [88]

$$\delta(r^2)_{e-scatt}^{2,1} = (3.764 \pm 0.045) \text{ fm}^2,$$

(12)

or muonic hydrogen/deuterium spectroscopy [36]

$$\delta(r^2)_{\mu}^{2,1} = (3.8112 \pm 0.0034) \text{ fm}^2.$$

(13)

Note that the charge radius differences in Eqs. (12) and (13) are consistent within uncertainties, despite the (still puzzling) significant discrepancies between muonic and electronic determinations of the proton [34,35] and deuteron [36] radii. Using $\delta(r^2)_{2,1}$ to predict the FS contribution yields a sensitivity to NP larger by a factor ~ 13 relative to $\delta(r^2)_{e-scatt}^{2,1}$, assuming the radii extraction from muonic spectroscopy is not affected by a possible NP coupling to muons.

The IS bounds on a new electron-neutron interaction from hydrogen/deuterium are summarized in Fig. 3.

IV. BOUNDS FROM ABSOLUTE FREQUENCY MEASUREMENTS

While IS are only sensitive to electron-neutron interactions, absolute frequencies can also probe the electron-proton and, in atoms with more than one electron or in positronium, electron-electron interactions. As we discussed above, by measuring two transitions one can extract y_e and y_N separately, and the combination with the IS data will also allow for a separation of y_p from y_n.

In case ϕ couples both to protons and neutrons with a similar strength, as in a Higgs portal or gauged $B - L$, the sensitivity to probe NP with IS is expected to be stronger than from the absolute frequency measurements. This can

1. We use here the proton radius value extracted from the so-called Mainz data [87].
be understood as follows. In light atoms, the NP contributions to the IS and to the absolute frequency are of the same order. However, typically the absolute accuracy of IS data (theory and experiment) is better by at least an order of magnitude than the absolute frequency data, see Appendix A. Thus, for $y_e \approx y_p$ IS measurements are a more sensitive to NP than the absolute frequencies.

It is important to distinguish between the case of a generic new force coupled to the electron and to the nucleus (including the proton) and the case of a dark photon (kinetic mixing) where the charges are proportional to the electric charges and a more careful treatment of the definition of the electromagnetic coupling, α, is required, see Ref. [25].

A. Bounds on y_e from helium and positronium

The electron-electron interaction can be probed in atoms with more than one electron, the simplest is helium, or in purely electronic systems such as positronium. Starting with the positronium, the $1^3S_1 - 2^3S_1$ interval is measured at the 10^{-9} level [89] in agreement with the theory prediction of Ref. [90]. For helium we combine all the transitions that are given in Table II of Ref. [21], where the agreement between theory and experiment is better than 2σ; the full list is given in Appendix A. Thus, we use the above to put upper bounds on y_e as function of the force-carrier mass m_ϕ. The results are presented in Fig. 4, where we also added the constraint from the electron magnetic moment, a_e, for comparison. This shows that a_e is still the strongest probe among the three. Yet the ϕ contribution to a_e enters only at the loop level which makes it more prone to cancelation against additional contributions from other states present in a complete NP model. Note that the helium bounds in Fig. 4 are evaluated by assuming no electron-nucleus interactions. We have verified that marginalizing over the latter does not significantly change the bounds. The bounds from positronium and helium are comparable and below few keV are weaker than the bound from a_e only a factor of few.

B. Model-independent bounds on y_e, y_p, and y_n

Here we combine observables from different atoms to probe the NP couplings y_p, y_n and y_e independently. In order to do so we perform a global fit based on a χ^2 function constructed from IS in hydrogen and helium as well as absolute transition frequencies in helium. Our χ^2 is composed of the $2^1S - 2^3S$ and $2^3P - 2^S$ IS between 4He and 3He, the helium/deuterium IS in the $1S - 2S$ transition and the $^4\nu_D$ observable, and the absolute frequencies considered in Sec. IVA. We present in Fig. 5, the 95% CL contours in the $y_e - y_p$ and $y_e - y_n$ planes for several values of m_ϕ. For each pair of couplings, we marginalize over the third coupling y_n and y_p, respectively. The generic shape of the bounds is understood as follows. Since the overlap integrals X_i, Y_i for electron-nucleus and electron-electron interactions are of comparable order when $y_p,n \sim y_e$, absolute frequencies and IS constrain the products $y_e y_p$ and $y_e y_n$, respectively, leading to contours at 45 degrees. The latter are then truncated
once y_e reaches a large value (typically $y_e \gtrsim y_{p,n}$) so that the y_e^2 term dominates the NP contribution to absolute frequencies in helium and the bounds become independent of y_p or y_n. Note that helium absolute frequencies are in principle sensitive to a possible relative sign between the nuclear and the electron couplings. We checked that either sign yields very similar bounds and thus, for simplicity, we present global-fit results for positive couplings only.

C. Atomic bounds on kinetic mixing

For the sake of illustration, we apply now our result to a specific NP model, that of a kinetically mixed massive gauge boson, the dark photon, denoted as A' [91]. As a result of the mixing between the photon and the dark photon, A' couples to the electromagnetic current, and its couplings to the protons, electrons and neutrons are $y_{p,e,n} = e\epsilon, 0, -e\epsilon$, respectively, where e is the QED gauge coupling constant and ϵ is a mixing parameter. Since all A' couplings are determined by a single parameter, a single atomic transition would suffice to probe it. However, when $m_{A'} \lesssim 1/\alpha_0$, the dark photon induces a $1/r$ atomic potential which is not distinguishable from the Coulomb one and the A' effect is a mere redefinition of the fine-structure constant, $\alpha \rightarrow (1 + \epsilon^2)\alpha$. Hence, in this regime, we need at least two observables to probe the dark photon, one of them being used to fix α. We follow here the procedure of Ref. [25] and combine either two atomic transitions together or one transition with a_e, the anomalous magnetic moment of the electron. Figure 6 shows the 95% CL bounds that we derived from helium and positronium, each combined with a_e, as well as existing bounds from hydrogen spectroscopy [23–25]. We find that helium and positronium

![Figure 5](image-url)
FIG. 5. The allowed region 95% CL contours for fixed mediator mass (as indicated in the plot) from the global χ^2 analysis of helium and hydrogen absolute frequencies as well as their isotope shifts. The left (right) panel shows contours of y_n (y_p) vs y_e, marginalizing over y_p (y_n).

![Figure 6](image-url)
FIG. 6. Comparison of atomic (indirect) constraints on the mixing ϵ between the photon and the dark photon A' depending on its mass $m_{A'}$. The red/blue (cyan) lines refer to He (positronium) transitions obtained in this work. For comparison, previous bounds from H spectroscopy are shown for $1S-2S$ combined with Rydberg states (purple) or a_e (pink) [23,24,93] and from one or the combination of two H transitions (orange, green) [25]. The range of $m_{A'} \leq 300$ keV is excluded by globular clusters [45]; for $m_{A'} \gtrsim 1$ MeV several direct, decay-dependent bounds also apply.
bounds surpass the known hydrogen bounds above ∼100 keV. We chose to present only indirect constraints from atomic spectroscopy on the kinetic-mixing parameter since those do not depend on the A' decay mode. In the sub-MeV region, these atomic probes are the most sensitive ones, after the LSND neutrino detector which directly searches for A' in the 3 photons decay [92], and the study of star cooling in globular clusters which excludes, for $m_{A'} \lesssim 300$ keV, mixing parameter values far below the displayed range of ϵ in Fig. 6. For $m_{A'} \gtrsim 1$ MeV, the sensitivity of atomic spectroscopy is also much weaker compared to probes based on A' decay (either visibly or invisibly) as in electron beam-dump experiments or colliders, like $BABAR$ (see Ref. [62] for a review). In conclusion, for $m_{A'} \gtrsim 0.3$ MeV, the most sensitive indirect probe of dark photon is from combining a_e with atomic transitions in helium.

V. DISCUSSION

In this work we study the sensitivity to new spin-independent forces of hydrogen and heliumlike atoms considering both absolute frequency and isotope shift measurements. We exploit the accuracy of both the measurements and the theoretical predictions achieved in these systems [21,22]. We demonstrate for the first time the power of isotope shift measurements in few-electrons atoms to constrain models where the new degree of freedom, ϕ, couples not only to the proton, but also to the neutron as, for instance, in the $B - L$ and Higgs portal models. The derived bounds represent, to date, the strongest laboratory bound on $m_{\phi} \gtrsim 100$ eV. For masses heavier than 300 keV, where astrophysical probes are ineffective, isotope shift spectroscopy in few-electron atoms constrains new regions of the parameter space in a model-independent way. Previous works on spin-independent new interactions [23–25] focused on hydrogen which is only sensitive to new interactions between the electron and the proton. The highly precise spectroscopy of helium has the advantage to probe also the electron coupling alone, reaching a sensitivity comparable to a_e below few keV. (See Ref. [26] for similar results regarding spin-dependent electron-electron interactions.) Furthermore, we show that current precision in positronium spectroscopy has comparable constraining power.

The present work emphasizes how the effort in improving the knowledge of the nuclear size has the indirect effect of improving the sensitivity to new spin-independent forces between the constituents of the atoms.

ACKNOWLEDGMENTS

We thank D. Budker, R. Ozeri, K. Pachucki and G. Perez for useful discussions and careful reading of the manuscript. We thank G. Bélanger, J. Berengut, A. Falkowski, O. Hen, J. Jaeckel, R. P. M. J. W. Notermans and M. Safranova for useful discussions and correspondence. C. D. is supported by the program Initiative d’Excellence of Grenoble-Alpes University under grant Contract No. ANR-15-IDEX-02. The work of Y. S. is supported by the Office of High Energy Physics of U.S. Department of Energy (DOE) under grant Contract No. DE-SC0012567.

APPENDIX A: EXPERIMENTAL DATA AND THEORETICAL PREDICTION

In this appendix we provide all experimental data and theoretical predictions that have been used in this paper.

We start with the nuclear charge radii in Table II used throughout the paper.

Table II. Charge radii r_A used for the IS bounds for different elements with isotopes A, obtained via electron-scattering experiments (e-scat.) or spectroscopy in muonic atoms (μ-spec.).

<table>
<thead>
<tr>
<th>Element</th>
<th>A</th>
<th>r_A [fm]</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/D</td>
<td>1</td>
<td>0.8791 ± 0.0079</td>
<td>e-scat.</td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.130 ± 0.010</td>
<td>e-scat.</td>
<td>[94]</td>
</tr>
<tr>
<td>He</td>
<td>3</td>
<td>1.973 ± 0.016</td>
<td>μ-spec.</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.681 ± 0.004</td>
<td>e-scat.</td>
<td>[72]</td>
</tr>
<tr>
<td>Li</td>
<td>6</td>
<td>2.589 ± 0.039</td>
<td>μ-spec.</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.444 ± 0.042</td>
<td>e-scat.</td>
<td>[95]</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>2.560 ± 0.011</td>
<td>μ-spec.</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.612 ± 0.009</td>
<td>e-scat.</td>
<td>[79]</td>
</tr>
</tbody>
</table>

Table III. Theoretical and experimental input values for the IS bounds: measured IS $\nu_i^{AA',exp}$, theory prediction for a point-like nucleus $\nu_i^{AA',th}$, and the field shift constant F_i. See also Ref. [21]. For the IS of 25–12D in H/D, see the absolute frequencies in Table IV, F_{15-25} for H/D is an approximate value obtained from the quoted FS in Ref. [82].

<table>
<thead>
<tr>
<th>A, A'</th>
<th>Transition</th>
<th>$\nu_i^{AA',exp}$ [kHz]</th>
<th>Reference</th>
<th>$\nu_i^{AA',th}$ [kHz]</th>
<th>F_i [kHz/fm2]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4He</td>
<td>$2^1P_0 - 2^3S_1$</td>
<td>−8 034 286.259 ± 2.4</td>
<td>[96–98]</td>
<td>−8 034 065.91 ± 0.19</td>
<td>−214.66 ± 0.02</td>
<td>[30,99–101]</td>
</tr>
<tr>
<td></td>
<td>$2^3P - 2^3S_1$</td>
<td>−3 368 444.7 ± 3.2</td>
<td>[102]</td>
<td>−3 367 149.3 ± 0.9</td>
<td>−1 212.2 ± 0.1</td>
<td>[102]</td>
</tr>
<tr>
<td>4He</td>
<td>$2^3S_1 - 2^3P_2$</td>
<td>64 701 466 ± 52</td>
<td>[102]</td>
<td>64 702 409</td>
<td>1 008</td>
<td>[102]</td>
</tr>
<tr>
<td>H/D</td>
<td>1S = 2S</td>
<td>670 994 334.605 ± 0.015</td>
<td>[82]</td>
<td>670 999 566.90 ± 0.89</td>
<td>−1 369.88</td>
<td>[82]</td>
</tr>
<tr>
<td>14,15N</td>
<td>$2^3P_0 - 2^3P_1$</td>
<td>64 418 424.16 ± 29 979.2</td>
<td>[77]</td>
<td>64 469 388.8 ± 269 812.8</td>
<td>34 747 876</td>
<td>[76]</td>
</tr>
<tr>
<td>6,7Li</td>
<td>$2^3P_0 - 2^3S_1$</td>
<td>3 474 773 ± 55</td>
<td>[76]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV. Measurements and predictions of absolute transition frequencies in H, D, He and positronium (Ps). The H and D values are used for the H/D IS in Sec. III B. The middle part of the table summarizes the experimental and theoretical frequencies of the Lamb shift \((4L - 2S_1)/2\) for \(L = S, D\). The lower part of the table is used for constraining \(v_e\) in Fig. 4: the transitions in \(^4\)He with an agreement of better than \(2\sigma\) between theory and experiment, as well as a transition in Ps.

<table>
<thead>
<tr>
<th>Element</th>
<th>Transition (i)</th>
<th>(\nu_i^{\text{exp}}) [kHz]</th>
<th>Reference</th>
<th>(\nu_i^b) [kHz]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>(2S_{1/2} - 12D_{3/2,5/2})</td>
<td>799 191 727 402.8 ± 6.7</td>
<td>[83]</td>
<td>799 191 727 409.1 ± 3.0</td>
<td>[103]</td>
</tr>
<tr>
<td>D</td>
<td>((4S_{1/2} - 2S_{1/2}) - \frac{1}{2}(2S - 1S))</td>
<td>192 510 702 145.6 ± 1.8</td>
<td>[69]</td>
<td>192 510 703 400 ± 800</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>((4S_{1/2} - 2D_{5/2}) - \frac{1}{2}(2S - 1S))</td>
<td>786 823 850 002 ± 56</td>
<td>[105]</td>
<td>786 823 848 400 ± 1 300</td>
<td></td>
</tr>
<tr>
<td>(^4)He</td>
<td>(2^3S_1 - 2^3P_1)</td>
<td>145 622 892 886 ± 183</td>
<td>[106]</td>
<td>145 622 891 500 ± 2 300</td>
<td>[21]</td>
</tr>
<tr>
<td>(^4)He</td>
<td>(2^3S_1 - 2^3P_1)</td>
<td>276 736 495 649 ± 2</td>
<td>[71]</td>
<td>276 736 494 500 ± 2 000</td>
<td></td>
</tr>
<tr>
<td>(^4)He</td>
<td>(2^3S_1 - 2^3P_1)</td>
<td>338 133 594 400 ± 500</td>
<td>[107]</td>
<td>338 133 594 900 ± 1 400</td>
<td></td>
</tr>
<tr>
<td>Ps</td>
<td>(1^3S_1 - 2^3S_1)</td>
<td>1 233 607 216 400 ± 3200</td>
<td>[89]</td>
<td>1 233 607 222 180 ± 580</td>
<td>[90]</td>
</tr>
</tbody>
</table>

In Table III we continue with the input values used for the IS bounds in Table I and Fig. 2 of Sec. III, see also Table 5 of Ref. [21]. Finally, we provide the values of measurements and calculations of absolute frequencies in Table IV.

APPENDIX B: HELIUM WAVE FUNCTION

In this appendix we specify the approximate wave functions we use in the helium calculations. It is conventional to label the states of helium as

\[n^{2S+1}L_J \]

(B1)

corresponding to the following electronic configuration \((1s)(nl)\). \(L\) is the total orbital momentum, \(S\) is the spin and \(J \leq L + S\) is the total angular momentum. Since one electron is always in the \((1s)\) orbital \(L = l\), and \(S = 0, 1\) corresponding to the singlet and triplet states, respectively.

For two-electron systems in the nonrelativistic limit, the spin and spatial parts of the wave function are factorized. The spin singlet \((S = 0)\) state is

\[|S = 0, m_S = 0\rangle = \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}, \]

(B2)

while the spin triplet \((S = 1)\) is with components

\[|S = 1, m_S = 1\rangle = |\uparrow\uparrow\rangle, \]

\[|S = 1, m_S = 0\rangle = \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}, \]

\[|S = 1, m_S = -1\rangle = |\downarrow\downarrow\rangle. \]

(B3)

Using an antisymmetrized combination of hydrogenic orbitals, the spatial part of the wave function takes the form

\[\langle \vec{r}_1, \vec{r}_2 | \Psi_{nlm}^S \rangle = \frac{1}{2\sqrt{\pi}} \frac{1}{\sqrt{2(1 + N_{nl})}} \times \left[F_{nl}(r_1, r_2)Y_{lm}(\Omega_2) + (-1)^S F_{nl}(r_2, r_1)Y_{lm}(\Omega_1) \right], \]

(B4)

where the \(1/(2\sqrt{\pi})\) prefactor is the \(Y_{00}\) spherical harmonic from the \(1s\) electron, and \(N_{nl}\) ensures that the radial part of the wave function is canonically normalized. We write the \(F_{nl}\)’s as products of nonrelativistic hydrogen radial wave functions as

\[F_{nl}(r_1, r_2) = R_{10}(r_1, Z_i)R_{nl}(r_2, Z_a), \]

(B5)

where (in units of \(a_0 = 1\))

\[R_{nl}(r, Z) = \left(\frac{2Z}{n} \right)^{3/2} \sqrt{\frac{(n-l-1)!}{2n(n+l)!}} e^{-\rho/2} L^{2l+1}_{n-l-1}(\rho), \]

(B6)

where \(\rho = 2rZ/n\), \(L^{a}_{k}(x)\) are the generalized Laguerre polynomials of degree \(k\), and \(Z_i\) and \(Z_a\) are the effective nuclear charges for the core \((1s)\) and valence \((nl)\) electrons, respectively. An important point is that \(Z_{i,a} \neq Z = 2\) because of screening effects; they depend on the electronic configuration considered, see Table V. The \(R_{nl}\)’s form an orthonormal basis for a fixed \(Z\). However, because the two electrons effectively feel a different nuclear charge \((Z_i \neq Z_a)\), there is an overall normalization constant for \(S\) waves because of the cross term in the square of Eq. (B4)

\[N_{nl} = (-1)^S \delta_{l,0} \left[\int drr^2 R_{10}(r, Z_i)R_{nl}(r, Z_a) \right]^2, \]

(B7)

which vanishes for \(Z_i = Z_a\) and \(n \geq 2\) by orthogonality of \(R_{nl}(r, Z)\).

115002-9
TABLE V. Effective nuclear charges for the excited states of helium under consideration, Z_i is the charge of the core ($1s$) electron and Z_a is the charge of the excited electron. These are obtained by variational methods using the nonrelativistic hydrogen wave functions as trial functions. When the electron is excited to a $n = 3$ or higher orbital, the screening of the core electron is found nearly perfect.

<table>
<thead>
<tr>
<th>State</th>
<th>Z_i</th>
<th>Z_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2)^1S$</td>
<td>2.08</td>
<td>1.09</td>
</tr>
<tr>
<td>$(2)^3S$</td>
<td>2.01</td>
<td>1.53</td>
</tr>
<tr>
<td>$(2)^3P$</td>
<td>2.00</td>
<td>0.97</td>
</tr>
<tr>
<td>$(2)^3P$</td>
<td>1.99</td>
<td>1.09</td>
</tr>
<tr>
<td>$n \geq 3$</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The total wave function for a fixed J and (its projection) $m_J = -J \ldots J$ are then constructed from $L \times S$ combination of angular momentum using the Clebsch-Gordan coefficients C^{l,m_J}_{L,m,S,m_S} as

$$|n^{2S+1}L_{j,m_J}\rangle = \sum_{m=-L}^{L} \sum_{m_S=-S}^{S} C^{l,m_J}_{L,m,S,m_S} |\psi_{nlm}\rangle |S,m_S\rangle. \quad (B8)$$

We use the above wave functions for all helium states with the exceptions of the 2^1S, 2^3S and 2^3P states where we use non-relativistic wave functions based on Hylleraas functions taken from Refs. [108,109] in order to better describe the repulsion between the two electrons. This turns out to be of particular importance for the 2^1S state. Indeed, for spin-singlet states, the spatial part of the wave function is symmetric under the exchange of the two-electrons so that the wave function in Eq. (B4) may overestimate the electron density is in the region where the electrons are close to each other, $r_1 \sim r_2$. Hylleraas functions then provide a more accurate description of the electron repulsion effect by introducing an explicit dependence on the interelectronic distance r_{12} in the wave function. The spatial part of wave function is then taken to be of the form

$$\langle \vec{r}_1, \vec{r}_2 | \psi_{nlm}^\phi \rangle = \frac{1}{\sqrt{N}} \left[F_{nl}(r_1, r_2, r_{12}) Y_{lm}(\Omega_2) + (-1)^S F_{nl}(r_2, r_1, r_{12}) Y_{lm}(\Omega_1) \right] \quad (B9)$$

where N is a normalization constant and F_{nl} now depends on r_{12} and is expanded on Hylleraas functions as

$$F_{nl}(r_1, r_2, r_{12}) = |\kappa (s + t)|^2 e^{-\frac{(s-t)^2}{2}} \sum_{i=1}^{k} c_i \phi_i(k_s, -\kappa t, \kappa u), \quad (B10)$$

with $s \equiv r_1 + r_2$, $t \equiv r_2 - r_1$, $u \equiv r_{12}$ and $\phi_i(s, t, u) = s^p t^q u^r$. It is convenient to reorganize the Hylleraas terms according to their powers of r_{12}. We then write the radial function in Eq. (B10) as

$$F_{nl}(r_1, r_2, r_{12}) = \sum_{j=0}^{k} f_j(r_1, r_2) r_{12}^j. \quad (B11)$$

APPENDIX C: OVERLAP INTEGRALS FOR HELIUM

In this appendix we give the analytical expressions for the overlap integrals for the case of helium, i.e. the electronic NP coefficients X_i and Y_i.

1. Electron-nucleus interactions

Let us consider the potential of Eq. (1) between the nucleus and its bound electron with the above helium wave functions. In first-order perturbation theory we find

$$X_i = \hat{X}_a - \hat{X}_b = \frac{1}{4\pi} \int \left[\prod_{k=1}^{n_e} \frac{e^{-m_{\sigma k}^* r_k}}{r_k} \right] \times \left[|\Psi_a(\vec{r}_1, \ldots, \vec{r}_{n_e})|^2 - |\Psi_b(\vec{r}_1, \ldots, \vec{r}_{n_e})|^2 \right], \quad (C1)$$

where n_e is the number of bound electrons and $|\Psi|^2$ is the electron wave function density. Using hydrogenic wave functions in Eq. (B4) the contributions from each state is

$$r_{12}^4 = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} H_l^{(k)}(r_1, r_2) \frac{l}{m} Y_{lm}(\Omega_1) Y_{lm}^*(\Omega_2), \quad (C3)$$

For the case of Hylleraas wave functions in Eq. (B9), we need the following expansion of r_{12} raised to the power k on spherical harmonics
PROBING NEW SPIN-INDEPENDENT INTERACTIONS ...

1. Electron-proton interactions

where the coefficients can be written in closed form in terms of hypergeometric functions [110]

\[H_i^{(n)}(r_1, r_2) = \frac{(-n/2)_i}{(1/2)_i} \frac{r_2^i}{2l + 1} \left(\frac{r_2}{r_1} \right)^l \]

\[\times F \left[l - n/2, -(n + 1)/2; l + 3/2; \frac{r_1^2}{r_2^2} \right], \]

with \(F(\alpha, \beta; \gamma; x) \) denoting the Gauss hypergeometric function and \((\xi)_i \equiv \Gamma(\xi + s)/\Gamma(\xi) \).

The first-order perturbation theory result is

\[Y_i \equiv Y_a - Y_b \]

\[= \frac{1}{4\pi} \int \prod_{k=1}^{n_e} d^3r_k \left[\sum_{ij} \frac{r_{ij} e^{-mr_{ij}}}{r_{ij}} \right] \times [\hat{\Psi}_a(r_1, \ldots, r_{n_e})]^2 - [\hat{\Psi}_b(r_1, \ldots, r_{n_e})]^2]. \] (C9)

Using the expansion of Eq. (C7) and the hydrogenic wave functions from Eq. (B4) we find

\[\hat{X}_{n\ell m} \equiv \hat{X}_{n\ell m} \]

\[= \frac{1}{4\pi} \int \prod_{k=1}^{n_e} d^3r_k \left[\sum_{ij} \frac{r_{ij} e^{-mr_{ij}}}{r_{ij}} \right] \times \left[\hat{\Psi}_a(r_1, \ldots, r_{n_e})^2 - \hat{\Psi}_b(r_1, \ldots, r_{n_e})^2 \right]. \] (C6)

where the square of the spatial wave function integrated over the angular variables is

\[\int d\Omega_1 d\Omega_2 |\hat{\Psi}_{n\ell m}\rangle^2 \]

\[= f_0(r_1, r_2)^2 + \sum_{i+j \geq 1} H_{i+j}^{(i)}(r_1, r_2)f_i(r_1, r_2)f_j(r_1, r_2) \]

\[+ [r_1 \leftrightarrow r_2] + 2(-1)^j \left[f_0(r_1, r_2)f_0(r_2, r_1)\delta_{ij} \right] \]

\[+ \sum_{i+j \geq 1} H_{i+j}^{(i)}(r_1, r_2)f_i(r_1, r_2)f_j(r_2, r_1). \] (C6)

2. Electron-electron interactions

Consider the NP potential between the bounded electrons, \(V_e(r_{12}) \) see Eq. (1). It is useful to expand the Yukawa potential over spherical harmonics as, see for example [111],

\[e^{-mr_{12}} \]

\[= 4\pi \sum_{l=0}^{\infty} G_l(r_1, r_2, m) \sum_{m=-l}^{l} Y_{lm}(\Omega_1) Y_{lm}^*(\Omega_2), \] (C7)

where the coefficients are

\[G_l(r_1, r_2, m) = \frac{I_{l+1/2}(mr_1)}{\sqrt{r_1}} \frac{K_{l+1/2}(mr_2)}{\sqrt{r_2}}, \] (C8)

with \(I \) and \(K \) the modified Bessel functions of the first and second kind respectively and \(r_1 \) (lesser) of \(r_1 \) and \(r_2 \). For Hylleraas wave functions which involve additional powers of \(r_{12} \) it will be convenient to use Eq. (C7) as a “generating functional” in order to derive the expansion of any \(r_{12}^k e^{-mr_{12}} \) functions (for \(k \geq 1 \)) by differentiating \(k \)-times the coefficients \(G_l(r_1, r_2, m) \).

FIG. 7. Comparison of the electronic NP coefficients \(X_i, Y_i \) based on hydrogen-like and Hylleraas wave functions depending on the mediator mass \(m_\phi \) for the transitions \(2S \rightarrow 2S \) and \(2P \rightarrow 2S \) in helium.
\[\hat{Y}_{n_{s}\pm L_{s}m_{s}} = -\frac{1}{4\pi(1 + N_{nl})} \int dr_{1}dr_{2}r_{1}^{2}r_{2}^{2}[G_{0}(r_{1},r_{2})R_{10}(r_{1},Z_{i})^{2}R_{nl}(r_{2},Z_{a})^{2} + (-1)^{S}G_{L}(r_{1},r_{2})R_{10}(r_{1},Z_{i})R_{10}(r_{2},Z_{i})R_{nl}(r_{1},Z_{a})R_{nl}(r_{2},Z_{a})]. \]

(C10)

where only \(G_{0,L} \) coefficients in the Yukawa expansion of Eq. (C7) are needed. Note that the integrand above no longer depends on \(m' \) and \(m_{s} \) hence the sum over Clebsch-Gordan coefficients squared gives \(\sum_{m'_{s},m_{s}}|C_{n_{s}m'_{s}m_{s}}^{L}|^{2} = 1 \) by orthonormality. Finally, note that the shift in Eq. (C10) is independent of \(J \) and \(m_{J} \), which is expected since the potential in Eq. (1) is invariant under rotations. We also used the fact that \(G_{i}(r_{1},r_{2}) = G_{i}(r_{2},r_{1}) \) to simplify the expression.

For the case of Hylleraas wave functions in Eq. (B9), we find

\[\hat{Y}_{n_{s}\pm L_{s}m_{s}} = -\frac{1}{4\pi N} \int r_{1}^{2}r_{2}^{2}dr_{1}dr_{2} \times \int d\Omega_{1}d\Omega_{2}e^{-mr_{12}^{2}/r_{12}}|\psi_{n_{s}lm}^{S}(r)|^{2}, \]

(C11)

where the angular integral simplifies to

\[\int d\Omega_{1}d\Omega_{2}e^{-mr_{12}^{2}/r_{12}}|\psi_{n_{s}lm}^{S}(r)|^{2} = \sum_{ij}G_{0}^{i}(r_{1},r_{2})[f_{i}(r_{1},r_{2})f_{j}(r_{1},r_{2}) + f_{j}(r_{2},r_{1})f_{i}(r_{2},r_{1})] + 2(-1)^{S}\sum_{ij}G_{i}^{i}(r_{1},r_{2})f_{i}(r_{1},r_{2})f_{j}(r_{2},r_{1}), \]

(C12)

where \((k) \) indicates the \(k \)th differentiation with respect to \(m \),

\[G_{i}^{(k)}(r_{1},r_{2},m) \equiv (-1)^{i}\frac{\partial^{k}G_{i}(r_{1},r_{2},m)}{\partial m^{k}}. \]

(C13)

In Fig. 7 we evaluate the impact of the Hylleraas wave functions on the electronic NP constants by calculating the ratios to the respective quantity based on hydrogen-like wave functions, \(X_{i}^{\text{Y}^{2+}}/X_{i}^{\text{H-like}}, Y_{i}^{\text{Y}^{2+}}/Y_{i}^{\text{H-like}}. \)

[89] M.S. Fee, A.P. Wells, S. Chu, E.D. Shaw, K. Danzmann, R.J. Chichister, and D.M. Zuckerman, Measurement of the

115002-14

