Search for R-parity violating supersymmetry with displaced vertices in proton-proton collisions at s=8TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Khachatryan, V., et al. “Search for R-Parity Violating Supersymmetry with Displaced Vertices in Proton-Proton Collisions at s = 8 TeV.” Physical Review D, vol. 95, no. 1, Jan. 2017. © 2017 CERN, for the CMS Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.95.012009</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Jul 20 23:22:21 EDT 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/117032</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0</td>
</tr>
</tbody>
</table>
Search for R-parity violating supersymmetry with displaced vertices in proton-proton collisions at $\sqrt{s} = 8$ TeV

V. Khachatryan et al.*
(CMS Collaboration)
(Received 17 October 2016; published 25 January 2017)

Results are reported from a search for R-parity violating supersymmetry in proton-proton collision events collected by the CMS experiment at a center-of-mass energy of $\sqrt{s} = 8$ TeV. The data sample corresponds to an integrated luminosity of 17.6 fb$^{-1}$. This search assumes a minimal flavor violating model in which the lightest supersymmetric particle is a long-lived neutralino or gluino, leading to a signal with jets emanating from displaced vertices. In a sample of events with two displaced vertices, no excess yield above the expectation from standard model processes is observed, and limits are placed on the pair production cross section as a function of mass and lifetime of the neutralino or gluino. At 95% confidence level, the analysis excludes cross sections above approximately 1 fb for neutralinos or gluinos with mass between 400 and 1500 GeV and mean proper decay length between 1 and 30 mm. Gluino masses are excluded below 1 and 1.3 TeV for mean proper decay lengths of 300 μm and 1 mm, respectively, and below 1.4 TeV for the range 2–30 mm. The results are also applicable to other models in which long-lived particles decay into multijet final states.

DOI: 10.1103/PhysRevD.95.012009

I. INTRODUCTION

In spite of extensive efforts by the ATLAS and CMS Collaborations at the CERN LHC, the superpartners of standard model (SM) particles predicted by supersymmetry (SUSY) [1,2] have not yet been observed. If superpartners are produced and R parity [3] is conserved, the lightest supersymmetric particle (LSP) passes through the detector unobserved, except for a potentially large amount of missing transverse energy. The assumption of R-parity conservation is motivated by experimental observations such as limits on the proton lifetime [4]. This assumption is not strictly required as long as either lepton or baryon number is conserved, or the associated R-parity violating (RPV) [5] terms in the Lagrangian are extremely small. Searches for a variety of signatures have not yet found any evidence for RPV SUSY [6–10].

In minimal flavor violating (MFV) models of RPV SUSY [11,12], the Yukawa couplings between superpartners and SM particles are the sole source of flavor symmetry violation, and the amplitudes for lepton- and baryon-number changing interactions are correspondingly small. At the LHC, the LSP typically decays within the detector volume, so there is no large missing transverse energy. The production processes of the superpartners are similar to those in the minimal supersymmetric standard model in that superpartners are produced in pairs, but the phenomenology depends on the identity of the LSP.

This analysis uses a benchmark signal model described in Ref. [12], in which the LSP is assumed to be either a neutralino or a gluino that is sufficiently heavy to decay into a top antiquark and a virtual top squark. The virtual top squark then decays via a baryon-number violating process to strange and bottom antiquarks, as shown in Fig. 1. Although this decay is heavily suppressed by the Yukawa coupling, it still dominates the top squark rate, with other partial widths being suppressed by a factor of 100 or more. As a consequence, the LSP is long-lived, with a lifetime that depends on the model parameters. For large parts of the parameter space, pair-produced LSPs lead to interesting signatures. Observable effects include increased top quark production rates, events with many jets, especially b-quark jets, and events with displaced vertices.

The decay of the LSP results in multiple jets emerging from a displaced vertex, often with wide opening angles. To identify the displaced vertices, we use a custom vertex

![FIG. 1. Decay diagram for the pair-produced neutralino ($\tilde{\chi}^0$) or gluino (\tilde{g}) LSP in the assumed signal model. In both cases, the LSP decays into a top antiquark plus a virtual top squark (\tilde{t}); the top squark then decays via a baryon-number violating process into strange and bottom antiquarks.](image-url)
reconstruction algorithm optimized for these distinctive features. This algorithm differs from standard methods used to identify b-quark jets [13], which assume a single jet whose momentum is aligned with the vertex displacement from the primary vertex. Our signature consists of two vertices, well separated in space. Studies based on event samples from Monte Carlo (MC) simulation show that SM background events rarely contain even one such reconstructed displaced vertex. In the even rarer events with two displaced vertices, the vertices are usually not well separated from each other.

The CMS Collaboration has also searched for pairs of displaced jets from a single vertex [14], while this analysis searches for a pair of displaced vertices, each of which is associated with a jet. The study reported here is sensitive to mean proper decay lengths between 300 μm and 30 mm, which are shorter than those probed by a similar analysis performed by the ATLAS Collaboration [15], and longer than those probed by a CMS analysis that looked for prompt LSP decays based on the jet and b-tagged jet multiplicity distributions [10].

This analysis applies not only to the MFV model described here, but more generally to models for physics beyond the SM with long-lived particles decaying to multiple jets. In addition to the results of the search with a neutralino or gluino LSP, we present a method for reinterpretation of the analysis.

II. THE CMS DETECTOR

The central feature of the CMS detector is a superconducting solenoid providing a magnetic field of 3.8 T aligned with the proton beam direction. Contained within the field volume of the solenoid are a silicon pixel and strip tracker, a lead tungstate electromagnetic calorimeter (ECAL), and a brass and scintillator hadronic calorimeter (HCAL). Outside the solenoid is the steel magnetic return yoke interspersed with muon tracking chambers. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [16].

The silicon tracker, which is particularly relevant to this analysis, measures the tracks of charged particles in the range of pseudorapidity, η, up to $|\eta| < 2.5$. For nonisolated particles with transverse momentum, p_T, of 1 to 10 GeV and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T, $25–90$ μm in the impact parameter in the transverse plane, and $45–150$ μm in the impact parameter in the longitudinal direction [17]. When combining information from the entire detector, the jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5% obtained when the ECAL and HCAL calorimeters alone are used [18].

The first level (L1) of the CMS trigger system, which is composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a fixed time interval of less than 4 μs. The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage.

III. EVENT SAMPLES

The data sample used in this analysis corresponds to an integrated luminosity of 17.6 fb^{-1}, collected in proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV in 2012. Events are selected using a trigger requiring the presence of at least four jets reconstructed from energy deposits in the calorimeters. At the L1 trigger, the jets are required to have $p_T > 40$ GeV, while in the HLT the threshold is $p_T > 50$ GeV. The latter threshold is afforded by a special data-taking strategy called “data parking” [19], in which the triggered events were saved but not promptly reconstructed, allowing a higher event rate. The data included in this analysis represent the fraction of the 2012 LHC operation for which this strategy was implemented.

Simulated events are used to model both the signal and background processes. Using PYTHIA 8.165 [20], signal samples with varying neutralino masses $M (200 \leq M \leq 1500$ GeV) and lifetimes $\tau (0.1 \leq c\tau \leq 30$ mm) are produced. In these samples, neutralinos are produced in pairs; each neutralino is forced to undergo a three-body decay into top, bottom, and strange (anti-)quarks. Backgrounds arising from SM processes are dominated by multijet and top quark pair ($t\bar{t}$) events. The multijet processes include b-quark pair events. Smaller contributions come from single top quark production (single t), vector boson production in association with additional jets ($V + jets$), diboson production (VV), and top quark pairs with a radiated vector boson ($t\bar{t} + V$). Processes with a single vector boson include virtual photons, W bosons, or Z bosons, while the diboson processes include WW, WZ, and ZZ. Single top events are simulated with POWHEG 1.0 [21–25]; diboson events are simulated with PYTHIA 6.426 [26]; all other backgrounds are simulated using MADGRAPH 5.1 [27]. For all samples, hadronization and showering are done using PYTHIA 6.426 with tune Z2*. The $Z2^*$ tune is derived from the Z1 tune [28], which uses the CTEQ5L parton distribution set, whereas $Z2^*$ adopts CTEQ6L [29]. The detector response for all simulated samples is modeled using GEANT4-based simulation [30] of the CMS detector. The effects of additional pp interactions per bunch crossing (“pileup”) are included by overlaying additional simulated minimum-bias events, such that the resulting distribution of the number of interactions matches that observed in the experiment.

IV. EVENT PRESELECTION

To ensure that the four-jet trigger efficiency is high and well understood, more stringent criteria are applied off-line,
requiring at least four jets in the calorimeter with \(p_T > 60 \text{ GeV} \). These jets are reconstructed from calorimeter energy deposits, which are clustered by the anti-\(k_T \) algorithm [31,32] with a distance parameter of 0.5. The trigger efficiency determined using events satisfying a single-muon trigger is \((96.2 \pm 0.2)\%\) for events with four off-line jets with \(p_T > 60 \text{ GeV} \). The simulation overestimates this efficiency by a factor of \(1.022 \pm 0.002\), so, where used, its normalization is corrected by this amount.

Jets considered in the rest of the analysis are those obtained in the full event reconstruction performed using a particle-flow (PF) algorithm [33,34]. The PF algorithm reconstructs and identifies photons, electrons, muons, and charged and neutral hadrons with an optimized combination of information from the various elements of the CMS detector. Before clustering the PF candidates into jets, charged PF candidates are excluded if they originate from a \(pp \) interaction vertex other than the primary vertex, which is the one with the largest scalar \(\Sigma |p_T|^2 \). The resulting particles are clustered into jets, again by the anti-\(k_T \) algorithm with a distance parameter of 0.5. Jets used in the analysis must satisfy \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.5\).

For an event to be selected for further analysis, the scalar sum of the \(p_T \) of jets in the event \(H_T \) is required to be at least 500 GeV. This requirement has little impact on signal events but is useful for suppressing SM background.

V. VERTEX RECONSTRUCTION, VARIABLES, AND SELECTION

A. Vertex reconstruction

Displaced vertices are reconstructed from tracks in the CMS silicon tracker. These tracks are required to have \(p_T > 1 \text{ GeV} \), at least eight measurements in the tracker including one in the pixel detector, and a transverse impact parameter with respect to the beam axis of at least 100 \(\mu \text{m} \). The impact parameter requirement favors vertices that are displaced from the primary vertex. The vertex reconstruction algorithm starts by forming seed vertices from all pairs of tracks that satisfy these requirements. Each vertex is fitted with the Kalman filter approach [35], and a fit is considered successful if it has a \(\chi^2 \) per degree of freedom \((\chi^2/d.o.f.) \) that is less than 5. The vertices are then merged iteratively until no pair of vertices shares tracks. Specifically, for each pair of vertices that shares one or more tracks, if the three-dimensional (3D) distance between the vertices is less than 4 times the uncertainty in that distance, a vertex is fit to the tracks from both, and they are replaced by the merged vertex if the fit has \(\chi^2/d.o.f. < 5 \). Otherwise, each track is assigned to one vertex or the other depending on its 3D impact parameter. The resulting vertices are considered as signals if there are more tracks already.

V. VERTEX RECONSTRUCTION, VARIABLES, AND SELECTION

B. Vertex variables and selection

The vertexing procedure produces multiple vertices per event, only some of which are consistent with the signal. In order to select quality vertices, we impose additional requirements on the vertex and its associated tracks and jets. The requirements for each vertex are

(i) at least five tracks;
(ii) at least three tracks with \(p_T > 3 \text{ GeV} \);
(iii) at least one pair of tracks with separation \(\Delta R < 0.4 \), where \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \), to favor vertices that include multiple tracks from a single jet;
(iv) at least one pair of tracks with \(\Delta R > 1.2 \) to favor vertices involving multiple jets;
(v) \(\Delta R < 4 \) for all pairs of tracks, to suppress wide-angle track coincidences;
(vi) at least one jet that shares one or more tracks with the vertex;
(vii) displacement in \(x-y \) of the vertex from the detector origin of less than 25 mm, to suppress vertices from interactions in the beam pipe or detector material;
(viii) uncertainty in the \(x-y \) distance of the vertex from the beam axis of less than 25 \(\mu \text{m} \).

In the data, 181 076 events have one vertex satisfying the above requirements, 251 have two of them, and no events have more than two. The candidate sample is composed of two-vertex events.

C. Signal discrimination in two-vertex events

The signal is extracted from the two-vertex events using the spatial separation between the vertices. In signal events,
the two LSPs are emitted approximately back to back, leading to large separations. We define the distance between the two vertices in the x-y plane as \(d_{VV} \), and fit this distribution to extract the signal. The fit to the observed \(d_{VV} \) distribution is described in Sec. VIII.

The signal \(d_{VV} \) templates are taken directly from simulation, with a distinct template for each LSP mass \(M \) and lifetime \(\tau \). In signal simulation, fewer than 10\% of events in the candidate sample have more than two selected vertices. For these events, the two vertices with the highest number of tracks are selected for the \(d_{VV} \) calculation, and in the case where two vertices have the same number of tracks, the vertex with decay products that have the higher invariant mass is chosen. The mass is reconstructed using the momenta of the associated tracks, assuming that the particles associated with the tracks have the charged pion mass. Figure 2 shows the \(d_{VV} \) distribution of an example simulated signal with \(c\tau = 1 \) mm, \(M = 400 \) GeV, and production cross section 1 fb, overlaid on simulated background. The bins in \(d_{VV} \) are chosen to be sensitive to the peaking nature of the background at low \(d_{VV} \); five 200 \(\mu m \) bins are used from 0 to 1 mm, then one bin from 1 to 50 mm where the contribution from the long-lived signal dominates.

Figure 3 shows the signal efficiency as a function of LSP mass and lifetime in the region \(d_{VV} > 600 \) \(\mu m \), where the background is low. The signal efficiency generally increases as lifetime increases, until the lifetime is so long that decays more often occur beyond our fiducial limit at the beam pipe. The efficiency also generally increases as mass increases, up to approximately 800 GeV where it begins to decrease because of the event selection criteria, particularly the limit on the opening angle between track pairs in a vertex.

\[\text{VI. BACKGROUND TEMPLATE} \]

Background vertices arise from poorly measured tracks. These tracks can arise from the same jet, or from several jets in multijet events. Because it is an effect of misreconstruction, two-vertex background events are the coincidence of single background vertices.

Multijet events and \(t\bar{t} \) production contribute 85\% and 15\% of the background in the two-vertex sample, respectively. Other sources of background, such as \(V+ \) jets and single \(t \) events, are negligible. Approximately half of the background events include one or more \(b \)-quark jets, whose displaced decay daughters combine with misreconstructed tracks to form vertices.

Instead of relying on simulation to reproduce the background, we construct a background template, denoted by \(d_{VV}^C \), from data. Taking advantage of the fact that two-vertex background events can be modeled using the one-vertex events, we define a control sample that consists of the 181 076 events with exactly one vertex. Each value entering the \(d_{VV}^C \) template is the distance in the x-y plane between two toy vertices, each determined by a value of the x-y distance from the beam axis to the vertex, denoted by \(d_{BV} \), and a value of the azimuthal angle of the vertex, denoted by \(\phi_{BV} \).
The two values of d_{BV} are sampled from the distribution of d_{BV} for the one-vertex sample, which is shown in Fig. 4. The observed distribution is in good agreement with the sum of the background contributions from simulation.

The two values of ϕ_{BV} are chosen using information about the jet directions in a one-vertex event. Since background vertices come from misreconstructed tracks, they tend to be located perpendicular to jet momenta. Therefore, we select a jet at random, preferring those with larger p_T because of their higher track multiplicity, and sample a value of ϕ_{BV} from a Gaussian distribution with width 0.4 rad, centered on a direction perpendicular to the jet in the transverse plane. To obtain the second value of ϕ_{BV}, we repeat this procedure using the same one-vertex event, allowing the same jet to be chosen twice.

The vertex reconstruction algorithm merges neighboring vertices. To emulate this behavior in our background template construction procedure, we discard pairs of vertices that are not sufficiently separated. We keep pairs of vertices with a probability parametrized by a Gaussian error function with mean μ_{clear} and width σ_{clear}. The values of μ_{clear} and σ_{clear}, which are related to the position uncertainties of the tracks, are varied in the fit to the observed d_{VV} distribution. The values found in the fit are $\mu_{\text{clear}} = 320 \text{ \mu m}$ and $\sigma_{\text{clear}} = 110 \text{ \mu m}$.

FIG. 4. One-vertex events: distribution of the x-y distance from the beam axis to the vertex, d_{BV}, for data, simulated background normalized to data, and a simulated signal with LSP $c_T = 1 \text{ mm}$, $M = 400 \text{ GeV}$, and production cross section 1 fb. Event pre-selection and vertex selection criteria have been applied. The last bin includes the overflow events.

FIG. 5. Distribution of the x-y distance between vertices, d_{VV}, for simulated background events (blue crosses), overlaid on the template d_{VV}^C (red line and crosshatches) constructed from simulated one-vertex events. The distributions are normalized to the observed number of two-vertex events. The error bars for the simulated events represent only the statistical uncertainty, while the shaded region for the template is the result of varying μ_{clear} and σ_{clear} within one standard deviation of the values from the fit.

Figure 5 compares the d_{VV}^C and d_{VV} distributions in simulated events, and shows the variation in d_{VV}^C for values of μ_{clear} and σ_{clear} that are within one standard deviation of the fit values. The agreement is well within the statistical uncertainty. When normalized to the observed number of two-vertex events, the difference in their yields in the region $d_{\text{VV}} > 600 \text{ \mu m}$ is 0.6 ± 2.6 events.

VII. SYSTEMATIC UNCERTAINTIES

The signal is extracted from a fit of a weighted sum of the signal and background templates to the observed d_{VV} distribution. For the signal, the simulation provides both the d_{VV} distribution and its normalization, and systematic uncertainties arise from sources such as vertex reconstruction efficiency, track reconstruction, track multiplicity, pileup conditions, the detector alignment, and the jet energies. For the background, for which the template is derived from a control sample, the systematic uncertainties come from effects that could cause a discrepancy between the constructed d_{VV}^C distribution and the nominal d_{VV} distribution.

A. Systematic uncertainties related to signal distribution and efficiency

The dominant systematic uncertainty in the signal normalization arises from the difference between the
vertexing efficiencies in the simulation and data. This effect is evaluated in an independent study in which artificial signal-like vertices are produced in background events by displacing tracks associated with jets by a known displacement vector, and then applying the vertex reconstruction algorithm. The magnitude of the displacement vector is sampled from an exponential distribution with scale parameter 1 mm, restricted to values between 0.3 and 25 mm, similar to the expected distribution of signal vertices. The direction is calculated from the momentum of the jets in the event, but is smeared to emulate the difference between the flight and momentum directions in simulated signal events due to track inefficiency and unaccounted neutral particles. Events are required to satisfy the preselection requirements described in Sec. IV, and the displaced jets satisfy $p_T > 50 \text{ GeV}$ and $\Delta R < 4$ for all pairs. To estimate the vertexing efficiency, we evaluate the fraction of events in which a vertex satisfying the requirements described in Sec. V B is reconstructed within 50 μm of the artificial vertex.

This fraction is evaluated for different numbers of displaced light parton or b-quark jets, with the ratio of efficiencies between data and simulation approaching unity for larger numbers of jets, independent of the size of the displacement. The largest disagreement between data and simulation occurs for the case where tracks from two light parton jets are displaced, where the fraction is 70% in simulation and 64% in data, with negligible statistical uncertainty. The ratio of efficiencies between data and simulation gives an 8.6% uncertainty per vertex. For two-vertex events, the uncertainty is 17%.

Additional studies explore the sensitivity of other effects that could alter the signal template. The vertex clustering depends on the number of charged particles in the event, which can vary based on the model of the underlying event used in PYTHIA [36]. The signal templates resulting from the choice of the underlying event model differ by no more than 1% in any bin and the overall efficiency changes by no more than 3%. This 3% is taken as a systematic uncertainty.

To test the sensitivity to a possible misalignment, the signal samples have been reconstructed using several tracker misalignment scenarios corresponding to various “weak modes”: coherent distortions of the tracker geometry left over by the alignment procedure that lead to a systematic bias in the track parameters for no penalty in χ^2 of the overall alignment fit [37]. These misalignments change the overall efficiency by no more than 2%, which is taken as a systematic uncertainty.

To study sensitivity to the pileup distribution, we vary the inelastic pp cross section used in the pileup weighting by $\pm 5\%$ [38]. This variation is found to have an effect of less than 1% on the signal efficiency.

The uncertainty in the jet energy scale affects the total energy measured, and could change whether an event passes the jet p_T or H_T selections. This effect is studied by varying the jet energy scale and resolution [18], and is found to change the signal efficiency by less than 1%. A 2.6% uncertainty [39] is associated with the integrated luminosity for the 2012 data set and the derived signal cross section. The uncertainty in the trigger efficiency is less than 1%.

Table I summarizes the systematic uncertainties in the signal efficiency. We assume there are no correlations among them, so we add them in quadrature to obtain the overall uncertainty.

<table>
<thead>
<tr>
<th>Systematic effect</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex reconstruction</td>
<td>17</td>
</tr>
<tr>
<td>Underlying event</td>
<td>3</td>
</tr>
<tr>
<td>Tracker misalignment</td>
<td>2</td>
</tr>
<tr>
<td>Pileup</td>
<td>1</td>
</tr>
<tr>
<td>Jet energy scale/resolution</td>
<td>1</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>3</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1</td>
</tr>
<tr>
<td>Overall</td>
<td>18</td>
</tr>
</tbody>
</table>

B. Systematic uncertainties related to background estimate

The $d_{\ell}^{C_{VV}}$ background template is constructed from a large sample of events with a single vertex. Systematic uncertainties in the $d_{\ell}^{C_{VV}}$ template are estimated by varying the $d_{\ell}^{C_{VV}}$ construction method and taking the difference between the $d_{\ell}^{C_{VV}}$ distributions using the default and alternate methods. The method for constructing $d_{\ell}^{C_{VV}}$ involves drawing two values of d_{BV} and two values of ϕ_{BV}, with an angle between vertices $\Delta \phi_{VV}$, so the main uncertainties come from effects related to the d_{BV} and $\Delta \phi_{VV}$ distributions.

The production of b quarks in pairs introduces a correlation between the vertex distances in two-vertex events that is not accounted for when single vertices are paired at random. In simulation, events without b quarks have a mean d_{BV} of $\sim 160 \mu$m, while events with b quarks, which account for 15% of one-vertex events, have a mean d_{BV} of $\sim 190 \mu$m, without significant dependence on b-quark momentum. We quantify this effect by sorting the simulated background events into those with and without b quarks, constructing the $d_{\ell}^{C_{VV}}$ distributions for each, and then combining them in the proportions 45:55, which is the ratio of b-quark to non-b-quark events in two-vertex background events determined from simulation. The systematic uncertainty is taken to be the difference between the simulated yields obtained with this procedure and the standard one, scaled to the observed two-vertex yield.

The $d_{\ell}^{C_{VV}}$ construction method discards pairs of vertices that would overlap, consistently leading to a two-vertex angular distribution that peaks at $\pm \pi$ radians. To assess the systematic uncertainty related to assumptions about the
angular distribution between vertices, we draw $\Delta\phi_{VV}$ from the angular distribution between vertices in simulated two-vertex background events. This leads to a d_{VV} distribution with a more strongly peaked $\Delta\phi_{VV}$ distribution, and provides a conservative estimate of the uncertainty.

The statistical uncertainty from the limited number of one-vertex events that are used to construct the two-vertex distribution is studied using a resampling method. Using the d_{VV} distribution as the parent, we randomly sample ten new d_{VV} pseudodata distributions, and use each to construct a d_{VV} distribution. The root-mean-square variation in bin-by-bin yields in the set of distributions gives the statistical uncertainty.

There is a small contribution to the uncertainty in the prediction of d_{VV} due to the binning of the d_{VV} parent distribution; moving the d_{VV} tail bin edges around by an amount compatible with the vertex position resolution, 20 μm, varies the prediction in d_{VV} only in the last two bins: by 0.06 events in the 0.8–1.0 mm bin, and by 0.09 events in the 1.0–50 mm bin.

The results of these four studies are summarized in Table II. In assessing the overall systematic uncertainty in the background template, we add in quadrature the values in Table II. In assessing the overall systematic uncertainty in Δd_{VV} hadronic bins: by 0.06 events in the 0.8–1.0 mm bin, and by 0.09 events in the 1.0–50 mm bin.

The results of these four studies are summarized in Table II. In assessing the overall systematic uncertainty in the background template, we add in quadrature the values in Table II. In assessing the overall systematic uncertainty in Δd_{VV} hadronic bins: by 0.06 events in the 0.8–1.0 mm bin, and by 0.09 events in the 1.0–50 mm bin.

The results of these four studies are summarized in Table II. In assessing the overall systematic uncertainty in the background template, we add in quadrature the values in Table II. In assessing the overall systematic uncertainty in Δd_{VV} hadronic bins: by 0.06 events in the 0.8–1.0 mm bin, and by 0.09 events in the 1.0–50 mm bin.

\begin{table}[h]
\centering
\begin{tabular}{lcccccc}
\hline
Systematic effect & 0.0–0.2 mm & 0.2–0.4 mm & 0.4–0.6 mm & 0.6–0.8 mm & 0.8–1.0 mm & 1.0–50 mm \\
\hline
d_{VV} correlations & -0.65 ± 0.05 & -3.60 ± 1.01 & 3.59 ± 0.76 & 0.63 ± 0.18 & 0.01 ± 0.07 & 0.01 ± 0.04 \\
$\Delta\phi_{VV}$ modeling & 0.74 ± 0.01 & 1.00 ± 0.00 & 1.04 ± 0.01 & 1.18 ± 0.07 & -0.01 ± 0.06 & -0.01 ± 0.04 \\
d_{VV} sample size & 0.05 & 0.54 & 0.51 & 0.17 & 0.04 & 0.07 \\
d_{VV} binning & \cdots & \cdots & \cdots & \cdots & 0.06 & 0.09 \\
Overall & 1.0 & 3.9 & 3.8 & 1.4 & 0.1 & 0.1 \\
\hline
\end{tabular}
\caption{Systematic uncertainties in the background yield in each d_{VV} bin arising from construction of the d_{VV} template. In the first two rows, shifts are given with their statistical uncertainty. The last row gives the overall systematic uncertainties, assuming no correlations. All yields are normalized to the observed total number of two-vertex events.}
\end{table}

\section*{VIII. FITTING, SIGNAL EXTRACTION, AND STATISTICAL INTERPRETATION}

The distribution of d_{VV}, the separation between vertices in the x-y plane for two-vertex events, is used to discriminate between signal and background, with the signal templates taken directly from the MC simulation and the background template constructed from the observed one-vertex event sample. In the following sections, we describe the fitting and statistical procedures used for the search.

\subsection*{A. Fitting procedure}

To estimate the signal and background event yields, a binned shape fit is performed using an extended maximum likelihood method. Initially neglecting terms arising from uncertainty in the templates, the log-likelihood function is given by

$$\log \mathcal{L}(n_i | s, b, \nu) = \sum_i [n_i \log a_i(s, b, \nu) - a_i(s, b, \nu)].$$

(1)

Here n_i is the number of observed events in bin i, s and b are the normalizations of the signal and background templates corresponding to the yields, ν denotes the shape parameters μ_{clear} and σ_{clear} used in the background template construction procedure, as described in Sec. VI, and

$$a_i(s, b, \nu) = sa_i^{(s)} + ba_i^{(b)}(\nu)$$

(2)

is the weighted sum of the signal and background frequencies $a_i^{(s)}$ and $a_i^{(b)}$ in bin i.

The only assumed shape uncertainty in the signal templates is that due to the finite MC statistics; the uncertainty is as high as 20% for the lowest lifetime and mass samples, but is generally no more than 1% in any bin for the majority of the templates. For the background templates, a Gaussian uncertainty is assumed in the value of the template in each bin, truncated at zero. To incorporate these uncertainties in the signal and background templates, a procedure similar to that of Barlow and Beeston [40] is followed, modified to allow a bin-by-bin Gaussian uncertainty in the background shape [41]. The final log-likelihood function is then given by
The limit on the signal yield is converted to a limit on the background-only distribution corresponding to the background-only fit, and background count \(b \) drawn from a Poisson distribution with mean equal to \(n \), the number of events in the data. The nuisance parameters \(\nu, A_i^{(s)}, \) and \(A_i^{(b)} \) are drawn from their corresponding Poisson or Gaussian distributions in each pseudoexperiment.

We obtain limits on the signal yield, which can be converted into limits on the product of the cross section for neutralino or gluino pair production and the square of the branching fraction for decay via the channel under study, denoted by \(\sigma B^2 \). To obtain limits on \(\sigma B^2 \), for a given number of signal events \(s_0 \), we calculate the probability for the null hypothesis of \(s = s_0 \) versus the alternative that \(s < s_0 \) denoted by \(p_{s_0} \). We do this in practice by generating 10 000 pseudoexperiments with \(s \) drawn from a Poisson distribution with mean \(s_0 \), and \(b \) drawn from a Poisson distribution with mean \(n - s_0 \). The background shape \(d_{VV}^{(s)} \) is taken from the \(\nu \) from the original fit and signal shape corresponding to the signal hypothesis in question, with \(A_i^{(s)} \) from their Gaussian distributions. The null hypothesis probability \(p_{s_0} \) is then the fraction of pseudoexperiments where \(q \geq q(s_0) \). We protect against downward fluctuations in the data by using the CLs criterion [43,44], defining the statistic as

\[
\text{CL}_s = \frac{p_{s_0}}{1 - p_0}.
\]

The 95% confidence level (C.L.) upper limit on \(s \) is then the biggest \(s_0 \) for which \(\text{CL}_s \) is still greater than 0.05.

The limit on the signal yield is converted to a limit on \(\sigma B^2 \) using the efficiencies calculated from simulation and the integrated luminosity of the data sample, 17.6 fb\(^{-1}\). We include the effect of the estimated 18% signal efficiency uncertainty by varying the cross section in each pseudoexperiment by the value sampled from a log-normal density with location parameter 1 and scale parameter 0.18.

C. Results of the fit

The result of the fit to data is shown in Fig. 6, for the LSP \(c \tau = 1 \) mm, \(M = 400 \) GeV signal template. The observed counts in each bin, along with the predictions from the background-only fit and the related uncertainties, are listed in Table III. There is a small excess of events with \(0.6 < d_{VV} < 50 \) mm: seven in the data, while the background-only fit predicts \(4.1 \pm 1.4 \), where the uncertainty is the overall systematic uncertainty discussed in Sec. VII. In the signal + background fits, a typical value for the signal yield is \(1.7 \pm 1.9 \), obtained with the \(c \tau = 1 \) mm, \(M = 400 \) GeV signal hypothesis. The associated \(p \) value obtained from pseudoexperiments is in the range 0.05–0.14 for signals with \(0.3 \leq c \tau \leq 30 \) mm, with the larger \(p \) values coming from those with longer lifetimes.
D. Upper limits on signal cross section

Figure 7 shows the observed 95% C.L. upper limits on σB^2. As an example, for a neutralino with mass of 400 GeV and $c\tau$ of 10 mm, the observed 95% C.L. upper limit on σB^2 is 0.6 fb.

Exclusion curves are overlaid, assuming the gluino pair production cross section [45–49]. In the context of the MFV model that we are studying, either a neutralino or a gluino LSP can decay into the final state targeted in the search.

The scan in $c\tau$ is in steps of 100 μm from 300 μm to 1 mm, then in 1 mm steps up to 10 mm, and in 2 mm steps to 30 mm; the mass points are spaced by 100 GeV. The exclusion curves are produced by linear interpolation of the limit scan, which identifies the set of points for which the interpolated upper limit is less than the gluino pair production cross section (the neutralino pair production cross section is expected to be much smaller).

IX. EXTENDING THE SEARCH TO OTHER SIGNAL MODELS

The search for displaced vertices applies to other types of long-lived particles decaying to multiple jets. Here we present a generator-level selection that can be used to reinterpret the results of our analysis. For signal models in...
which there are two well-separated displaced vertices, this generator-level selection approximately replicates the reconstruction-level efficiency. The selection is based on the displacements of the long-lived particles, and the momenta and angular distributions of their daughter particles, which are taken to be \(u, d, s, c, \) and \(b \) quarks, electrons, and muons. The daughter particles are said to be “accepted” if they satisfy \(p_T > 20 \) GeV and \(|\eta| < 2.5 \), and “displaced” if their transverse impact parameter with respect to the origin is at least 100 \(\mu \)m. The criteria of the generator-level selection are

(a) at least four accepted quarks with \(p_T > 60 \) GeV;
(b) \(H_T \) of accepted quarks > 500 GeV;
(c) for each vertex:
 (i) \(x-y \) distance from beam axis < 25 mm;
 (ii) at least one pair of accepted displaced daughter particles with \(\Delta R > 1.2 \);
 (iii) \(\Delta R < 4 \) for all pairs of accepted displaced daughter particles;
 (iv) at least one accepted displaced daughter quark;
 (v) \(\sum p_T \) of accepted displaced daughter particles > 200 GeV;
(d) \(x-y \) distance between vertices > 600 \(\mu \)m.

In the region with \(d_{\text{ch}} > 600 \mu \)m, the background level is well determined and is insensitive to fit parameters. Use of this generator-level selection replicates the reconstruction-level efficiency with an accuracy of 20% or better for a selection of models for which the signal efficiency is high (>10%). The selection may underestimate the trigger efficiency because it does not take into account effects such as initial- and final-state radiation, and may overestimate the efficiency for reconstructing vertices with \(b \)-quark secondaries, since the \(b \)-quark lifetime can impede the association of their decay products with the reconstructed vertices.

\[\text{X. SUMMARY} \]

A search for \(R \)-parity violating SUSY in which long-lived neutralinos or gluinos decay into multijet final states was performed using proton-proton collision events collected with the CMS detector at \(\sqrt{s} = 8 \) TeV in 2012. The data sample corresponded to an integrated luminosity of 17.6 \(\text{fb}^{-1} \), and was collected requiring the presence of at least four jets. No excess above the prediction from standard model processes was observed, and at 95% confidence level, the data excluded cross section times branching fraction squared above approximately 1 fb for neutralinos or gluinos with mass between 400 and 1500 GeV and \(c\tau \) between 1 and 30 mm. Assuming gluino pair production cross sections, gluino masses below 1 and 1.3 TeV were excluded for mean proper decay lengths of 300 \(\mu \)m and 1 mm, respectively, and below 1.4 TeV for the range 2–30 mm. While the search specifically addressed \(R \)-parity violating SUSY, the results were relevant to other massive particles that decay to two or more jets. These are the most restrictive bounds to date on the production and decay of pairs of such massive particles with intermediate lifetimes.

\[\text{ACKNOWLEDGMENTS} \]

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); CERN; TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), Contracts No. Harmonia 2014/14/M/ST2/00428, No. Opus 2013/11/B/ST2/04202, No. 2014/13/B/ST2/02543 and No. 2014/15/B/ST2/03998, No. Sonata-bis 2012/07/E/ST2/01406; the Thales and
Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, Contract No. C-1845.

SEARCH FOR R-PARITY VIOLATING SUPERSYMMETRY ...

PHYSICAL REVIEW D 95, 012009 (2017)

SEARCH FOR R-PARITY VIOLATING SUPERSYMMETRY ... PHYSICAL REVIEW D 95, 012009 (2017)

Institute Rudjer Boskovic, Zagreb, Croatia
University of Cyprus, Nicosia, Cyprus
Charles University, Prague, Czech Republic
Universidad San Francisco de Quito, Quito, Ecuador

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
Department of Physics, University of Helsinki, Helsinki, Finland
Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Georgian Technical University, Tbilisi, Georgia
Thilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Hamburg, Hamburg, Germany
Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
National and Kapodistrian University of Athens, Athens, Greece
University of Ioánnina, Ioánnina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
Wigner Research Centre for Physics, Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
University of Debrecen, Debrecen, Hungary

National Institute of Science Education and Research, Bhubaneswar, India
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, Kolkata, India
Indian Institute of Technology Madras, Madras, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research-A, Mumbai, India
Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland

INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
SEARCH FOR R-PARITY VIOLATING SUPERSYMMETRY …

PHYSICAL REVIEW D 95, 012009 (2017)

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey

Istanbul Technical University, Istanbul, Turkey

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara—Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA

University of Wisconsin—Madison, Madison, Wisconsin, USA

012009-21
V. KHACHATRYAN et al.

PHYSICAL REVIEW D 95, 012009 (2017)

\^aDeceased.
\^bAlso at Vienna University of Technology, Vienna, Austria.
\^cAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
\^dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
\^eAlso at Universidade Estadual de Campinas, Campinas, Brazil.
\^fAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
\^gAlso at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
\^hAlso at Joint Institute for Nuclear Research, Dubna, Russia.
\^iAlso at Cairo University, Cairo, Egypt.
\^jAlso at Fayoum University, El-Fayoum, Egypt.
\^kAlso at British University in Egypt, Cairo, Egypt.
\^lAlso at Ain Shams University, Cairo, Egypt.
\^mAlso at Université de Haute Alsace, Mulhouse, France.
\^nAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
\^oAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
\^pAlso at Tbilisi State University, Tbilisi, Georgia.
\^qAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
\^rAlso at University of Hamburg, Hamburg, Germany.
\^sAlso at Brandenburg University of Technology, Cottbus, Germany.
\^tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
\^uAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
\^vAlso at University of Debrecen, Debrecen, Hungary.
\^wAlso at Indian Institute of Science Education and Research, Bhopal, India.
\^xAlso at Institute of Physics, Bhubaneswar, India.
\^yAlso at University of Visva-Bharati, Santiniketan, India.
\^zAlso at University of Ruhuna, Matara, Sri Lanka.
\^aaAlso at Isfahan University of Technology, Isfahan, Iran.
\^abAlso at University of Tehran, Department of Engineering Science, Tehran, Iran.
\^acAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
\^adAlso at Università degli Studi di Siena, Siena, Italy.
\^aeAlso at Purdue University, West Lafayette, USA.
\^afAlso at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
\^agAlso at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
\^ahAlso at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
\^aiAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
\^ajAlso at Institute for Nuclear Research, Moscow, Russia.
\^akAlso at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia.
\^alAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
\^amAlso at University of Florida, Gainesville, USA.
\^anAlso at P.N. Lebedev Physical Institute, Moscow, Russia.
\^aoAlso at California Institute of Technology, Pasadena, USA.
\^apAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
\^aqAlso at INFN Sezione di Roma, Università di Roma, Roma, Italy.
\^arAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
\^asAlso at National and Kapodistrian University of Athens, Athens, Greece.
\^atAlso at Riga Technical University, Riga, Latvia.
\^auAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
\^avAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
\^awAlso at Adiyaman University, Adiyaman, Turkey.
\^axAlso at Mersin University, Mersin, Turkey.
\^ayAlso at Cag University, Mersin, Turkey.
\^azAlso at Piri Reis University, Istanbul, Turkey.
\^baAlso at Gaziosmanpasa University, Tokat, Turkey.
\^bbAlso at Ozyegin University, Istanbul, Turkey.
\^bcAlso at Izmir Institute of Technology, Izmir, Turkey.
\^bdAlso at Marmara University, Istanbul, Turkey.
\^beAlso at Kafkas University, Kars, Turkey.
\^bfAlso at Istanbul Bilgi University, Istanbul, Turkey.