Measurement of the ratio $B(t \ W_b)/B(t \ W_q)$ in pp collisions at $s = 8$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurement of the ratio $B(t \to Wb)/B(t \to Wq)$ in pp collisions at $\sqrt{s} = 8$ TeV

CERN Collaboration*

CERN, Switzerland

1. Introduction

Because of its large mass [1], the top quark decays before fragmenting or forming a hadronic bound state [2]. According to the standard model (SM), the top quark decays through an electroweak interaction almost exclusively to an on-shell W boson and a b quark. The magnitude of the top–bottom charged current is proportional to $|V_{tb}|$, an element of the Cabibbo–Kobayashi–Maskawa (CKM) matrix. Under the assumption that the CKM matrix is unitary and given the measured values for V_{td} and V_{ub}, or V_{ts} and V_{td}, $|V_{tb}|$ is expected to be close to unity and dominate over the off-diagonal elements, i.e. $|V_{tb}| \gg |V_{ts}|, |V_{td}|$. Thus, the decay modes of the top quark to lighter down-type quarks (d or s) are allowed, but highly suppressed. The indirect measurement of $|V_{tb}|$, from the unitarity constraint of the CKM matrix, is $|V_{tb}| = 0.999146^{+0.000021}_{-0.000046}$ [3]. Any deviation from this value or in the partial decay width of the top quark to b quarks, would indicate new physics contributions such as those from new heavy up- and/or down-type quarks or a charged Higgs boson, amongst others [4]. Direct searches at the Large Hadron Collider (LHC) have set lower limits on the mass of these hypothetical new particles [5–15], and the observation of a SM Higgs boson candidate [16–18] places stringent constraints on the existence of a fourth sequential generation of quarks. These results support the validity of both the unitarity hypothesis and the 3×3 structure of the CKM matrix for the energy scale probed by the LHC experiments. However, other new physics contributions, including those described above, could invalidate the bounds established so far on $|V_{tb}|$ [3].

In this Letter, we present a measurement of $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over the branching fractions of the top quark to a W boson and a down-type quark ($q = b, s, d$), under the assumption of the unitarity of the 3×3 CKM matrix, $R = |V_{tb}|^2$, and thus to indirectly measure $|V_{tb}|$. In addition, the combination of a determination of R and a measurement of the t-channel single-top-quark cross section can provide an indirect measurement of the top-quark width (Γ_t) [19]. The most recent measurement of Γ_t based on this approach [20] is found to be compatible with the SM predictions with a relative uncertainty of approximately 22%. The value of R has been measured at the Tevatron, and the most precise result is obtained by the D0 Collaboration, where $R = 0.90^{+0.04}_{-0.04}$ (stat. + syst.) [21] indicates a tension with the SM prediction. This tension is enhanced for the measurement in the tt dilepton decay channel, where both W bosons decay leptonically and $R = 0.86^{+0.04}_{-0.042}$ (stat.) ± 0.035 (syst.) is obtained. The most recent measurements by the CDF Collaboration are given in [22,23].

Owing to its purity, the tt dilepton channel is chosen for this measurement. Events are selected from the data sample acquired in proton–proton collisions at $\sqrt{s} = 8$ TeV by the Compact Muon Solenoid (CMS) experiment at the LHC during 2012. The integrated luminosity of the analysed data sample is 19.7 ± 0.5 fb$^{-1}$ [24].
The selected events are used to measure the $t\bar{t}$ production cross section by fitting the observed jet multiplicity distribution, constraining the signal and background contributions. The b-quark content of the events is inferred from the distribution of the number of b-tagged jets per event as a function of jet multiplicity for each of the dilepton channels. Data-based strategies are used to constrain the main backgrounds and the contributions of extra jets from gluon radiation in $t\bar{t}$ events. The R value is measured by fitting the observed b-tagged jet distribution with a parametric model that depends on the observed cross section, correcting for the fraction of jets that cannot be matched to a $t \to Wq$ decay. The model also depends on the efficiency for identifying b jets and discriminating them from other jets. Lastly, the measurement of R is combined with a previously published CMS result of the t-channel production cross section of single top quarks in pp collisions [25] to yield an indirect determination of the top-quark total decay width.

2. The CMS detector

The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured in gas-ionisation detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors.

The silicon tracker measures charged particles within the pseudorapidity range $|\eta| < 2.5$, where the pseudorapidity η is defined as $\eta = -\ln\tan(\theta/2)$ and θ is the polar angle of the trajectory of the particle with respect to the anticlockwise-beam direction. The tracker consists of 1440 silicon pixel and 15148 silicon strip detector modules and is located in the field of the superconducting solenoid. It provides an impact parameter resolution of $\sim 15 \mu m$ and a transverse momentum (p_T) resolution of about 1.5% for 100 GeV particles. The electron energy is measured by the ECAL and its direction is measured by the tracker. The mass resolution for $Z \to ee$ decays is 1.6% when both electrons are in the ECAL barrel, and 2.6% when both electrons are in the ECAL endcap [26].

Matching muons to tracks measured in the silicon tracker results in a p_T resolution between 1 and 10%, for p_T values up to 1 TeV. The jet energy resolution (JER) amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV [27].

A more detailed description of the detector can be found in Ref. [28].

3. Simulation of signal and background events

The top-quark pair production cross section has been calculated at next-to-next-to-leading order (NNLL) and next-to-next-to-leading logarithmic soft gluon terms (NNLL) [29]. In proton–proton collisions at $\sqrt{s} = 8$ TeV, and for a top-quark mass of 172.5 GeV, the expected cross section is $\sigma_{\text{NNLO+NNLL}}(t\bar{t}) = 253.4 \pm 6$ (PDF) pb, where the first uncertainty is from the factorisation and renormalisation scales, and the second is from the parton distribution functions (PDFs). Signal events are simulated for a top-quark mass of 172.5 GeV with the leading-order (LO) Monte Carlo (MC) generator MADGRAPH (v5.1.3.30) [30] matched to PYTHIA (v6.4.26) [31], where the $t\bar{t}$ lepton decays are simulated with the TAUOLA package [v27.12.15] [32]. The CTEQ6L1 PDF set is used in the event generation [33]. Matrix elements describing up to three partons, and including b quarks, in addition to the $t\bar{t}$ pair are included in the generator used to produce the simulated signal samples. An alternative simulation at next-to-leading order (NLO) based on POWHEG (v1.0, r1380) [34–36], using the CTEQ6M PDF set [33] and interfaced with PYTHIA, is used to evaluate the signal description uncertainty. A correction to the simulated top-quark p_T is applied, based on the approximate NNLO computation [37]: the events are reweighted at the generator level to match the top-quark p_T prediction, and the full difference between the reweighted and unweighted simulations is assigned as a systematic uncertainty.

The most relevant background processes for the dilepton channel are from the production of two genuine isolated leptons with large p_T. This includes Drell–Yan (DY) production of charged leptons, i.e. from a $Z/\gamma* \to l^+l^-$ decay, which is modelled with MADGRAPH for dilepton invariant masses above 10 GeV, and is normalised to a NNLO cross section of 4.393 nb, computed using FEWZ [38]. The $Z + \gamma$ process is also simulated with MADGRAPH and normalised to the LO predicted cross section of 123.9 pb. Single-top-quark processes are modelled at NLO with POWHEG [39,40] and normalised to cross sections of 22 ± 2 pb, 86 ± 3 pb, and 5.6 ± 0.2 pb for the tW, $t\tau$, and s-channel production, respectively [37]. The theory uncertainties are due to the variation of the PDFs and factorisation and renormalisation scales. Diboson processes are modelled with MADGRAPH and normalised to the NLO cross section computed with MCFM [41]. The generation of WW, WZ, and ZZ pairs is normalised to inclusive cross sections of 54.8 pb, 33.2 pb, and 17.7 pb, respectively. The production of a W boson in association with jets, which includes misreconstructed and non-prompt leptons, is modelled with MADGRAPH and normalised to the LO cross sections of 232 fb and 208 fb, respectively. The production of a W boson in association with jets, which includes misreconstructed and non-prompt leptons, is modelled with MADGRAPH and normalised to a total cross section of 36.3 nb computed with FEWZ. Multijet processes are also studied in simulation but are found to yield negligible contributions to the selected sample.

A detector simulation based on GEANT4 (v9.4p03) [42,43] is applied after the generator step for both signal and background samples. The presence of multiple interactions (pileup) per bunch crossing is incorporated by simulating additional interactions (both in-time and out-of-time with the collision) with a multiplicity matching that observed in the data. The average number of pileup events in the data is 21 interactions per bunch crossing.

4. Event selection and background determination

The event selection is optimised for $t\bar{t}$ dilepton final states that contain two isolated oppositely charged leptons ℓ (electrons or muons), missing transverse energy (E_T^{miss}) defined below, and at least two jets. Events in which the electrons or muons are from intermediate t lepton decays are considered as signal events. Dilepton triggers are used to acquire the data samples, where a minimum transverse momentum of 8 GeV is required for each of the leptons, and 17 GeV is required for at least one of the leptons. Electron-based triggers include additional isolation requirements, both in the tracker and calorimeter detectors.

All objects in the events are reconstructed with a particle-flow (PF) algorithm [44,45]. Reconstructed electron and muon candidates are required to have $p_T > 20$ GeV and to be in the fiducial region $|\eta| < 2.4$ of the detector. A particle-based relative isolation parameter is computed for each lepton and corrected on an event-by-event basis for the contribution from pileup events. We require that the scalar sum of the p_T of all particle candidates reconstructed in an isolation cone built around the lepton’s momentum vector is less than 15% (12%) of the electron (muon) transverse momentum. The isolation cone is defined using the
radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$, where $\Delta \eta$ and $\Delta \phi$ are the differences in pseudorapidity and azimuthal angle between the particle candidate and the lepton. For each event we require at least two lepton candidates originating from a single primary vertex. Among the vertices identified in the event, the vertex with the largest Σp_T, where the sum runs over all tracks associated with the vertex, is chosen as the primary vertex. The two leptons with the highest p_T are chosen to form the dilepton pair. Same-flavour dilepton pairs (ee or $\mu\mu$) compatible with $Z \rightarrow \ell^+\ell^-$ decays are removed by requiring $|M_2 - M_{Z\ell\ell}| > 15$ GeV, where M_2 is the Z boson mass [3] and $M_{\ell\ell}$ is the invariant mass of the dilepton system. For all dilepton channels it is further required that $M_{\ell\ell} > 12$ GeV in order to veto low-mass dilepton resonances, and that the leptons have opposite electric charge.

Jets are reconstructed by clustering all the PF candidates using the anti-k_T algorithm [46] with a distance parameter of 0.5. Jet momentum is defined as the vector sum of all particle momenta in the jet, and in the simulation it is found to be within 5 to 10% of the hadron-level momentum over the entire p_T spectrum and detector acceptance. A correction is applied by subtracting the extra energy clustered in jets due to pileup, following the procedure described in Refs. [47,48]. The energies of charged-particle candidates associated with other reconstructed primary vertices in the event are also subtracted. Jet energy scale (JES) corrections are derived from simulation, and are validated with in-situ measurements of the energy balance of dijet and photon + jet events [27]. Additional selection criteria are applied to events to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions. In the selection of $t\bar{t}$ events, at least two jets, each with a corrected transverse momentum $p_T > 30$ GeV and $|\eta| \leq 2.4$, are required. The jets must be separated from the selected leptons by $\Delta R(t, \text{jet}) = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \geq 0.3$. Events with up to four jets, selected under these criteria, are used.

The magnitude of the vector sum of the transverse momenta of all particles reconstructed in the event is used as the estimator for the momentum imbalance in the transverse plane, E_T^{miss}. All JES corrections applied to the event are also propagated into the E_T^{miss} estimate. For the ee and $\mu\mu$ channels, $E_T^{\text{miss}} > 40$ GeV is required in order to reduce the contamination from lepton pairs produced through the DY mechanism in association with at least two jets.

The DY contribution to the same-flavour dilepton channels is estimated from the data after the full event selection through the modelling of the angle $\Theta_{\ell\ell}$ between the two leptons. The $\Theta_{\ell\ell}$ distribution discriminates between leptons produced in DY processes and leptons from the top-quark pair decay cascade. In the first case an angular correlation is expected, while in the second case the leptons are nearly uncorrelated. The probability distribution function for $\Theta_{\ell\ell}$ is derived from data using a DY-enriched control region selected after inverting the E_T^{miss} requirement of the standard selection. Studies of simulated events indicate that the shape of the $\Theta_{\ell\ell}$ distribution is well described with this method, and that the contamination from other processes in the control region can be neglected. Compatibility tests performed in simulations using different channels and jet multiplicities are used to estimate an intrinsic 10% uncertainty in the final DY background.

The other sources of uncertainty in the method are related to the simulation-based description of the probability distribution function for the $\Theta_{\ell\ell}$ distribution from other processes. Uncertainties are estimated either by propagating the uncertainties in pileup or JES and JER, or by trying alternative functions for the $t\bar{t}$ contribution with varied factorisation/renormalisation scales (μ_R/μ_F) with respect to their nominal values given by the momentum transfer in the event, matrix element/parton shower (ME-PS) matching threshold, or generator choice (POWHEG vs. MadGraph). The shapes of kinematic distributions for DY and other processes are used in a maximum-likelihood fit to estimate the amount of DY background in the selected sample. A total uncertainty of 21% is estimated from the data in the rate of DY events for the same-flavour channels.

For the $e\mu$ channel, a similar fit procedure is adopted using a different variable: the transverse mass $M_T = \sqrt{2E_T^{\text{miss}}p_T(1 - \cos \Delta \phi)}$ of each lepton, where $\Delta \phi$ is the difference in azimuthal angle between the lepton and the missing transverse momentum. The distribution of the sum $\sum M_T$ is used as the distribution in the fit. In this case the probability distribution function for $Z/\gamma^* \rightarrow \tau \tau \rightarrow e\mu$ is derived from simulation. The determination of the uncertainty associated with this method follows a similar prescription to that described above for the same-flavour channels. A total uncertainty of 21% is assigned to the amount of DY contamination in the $e\mu$ channel.

The second-largest background contribution is from single-top-quark processes (in particular the tW channel) that is relevant for this measurement since the decay products of a single top quark (instead of a pair) are selected. The contribution of this process is estimated from simulation. Other background processes are also estimated from simulation. Uncertainties in the normalisation stemming from instrumental uncertainties in the integrated luminosity, trigger and selection efficiencies, and energy scales, as well as generator-specific uncertainties, are taken into account.

Table 1 shows the yields in the data and those predicted for signal and background events after the full event selection. The systematic uncertainties assigned to the predictions of signal and background events include the uncertainties in the JES and JER, pileup modelling, cross section calculations, integrated luminosity, and trigger and selection efficiencies. A conservative uncertainty is assigned to the predicted yields of multijet and $W \rightarrow \ell\nu$ background events since these contributions are from misidentified leptons and have been estimated solely from simulation. Good overall
agreement is observed for all three dilepton categories between the yields in data and the sum of expected yields.

5. Cross section measurement

The selected events are categorised by the dilepton channel and the number of observed jets. Fig. 1 shows the expected composition for each event category. Good agreement is observed between the distributions from the data and the expectations, including the control regions, defined as events with fewer than two or more than four jets. The chosen categorisation not only allows one to study the contamination from initial- and final-state gluon radiation (ISR/FSR) in the sample, but also to constrain some of the uncertainties from the data.

The $t\bar{t}$ dilepton signal strength, μ, defined as the ratio of the observed to the expected signal rate, is measured from the jet multiplicity distribution by using a profile likelihood method [49]. A likelihood is calculated from the observed number of events in the k dilepton channels and jet multiplicity categories as

$$L(\mu, \theta) = \prod_k P[N_k, \hat{N}_k(\mu, \theta_i)] \prod_i \rho(\theta_i),$$

where P is the Poisson probability density function, N_k is the number of events observed in the k-th category, \hat{N}_k is the total number of expected events from signal and background, and θ_i are the nuisance parameters, distributed according to a probability density function ρ. The nuisance parameters are used to modify the expected number of events according to the different systematic uncertainty sources, which include instrumental effects (such as integrated luminosity, pileup, energy scale and resolution, lepton trigger and selection efficiencies) and signal modelling ($\mu_\text{ISR}/\mu_\text{FS},$ ME-PS scale, top-quark mass, leptonic branching fractions of the W boson) amongst others. The PDF uncertainty is estimated using the PDF4LHC prescription [50,51]. The uncertainty from the choice of the $t\bar{t}$ signal generator is estimated by assigning the difference between the MADGRAPH-based and the POWHEG-based predictions as an extra uncertainty in the fit. The nuisance parameters are assumed to be unbiased and distributed according to a log-normal function. Based on the likelihood expressed in Eq. (1), the profile likelihood ratio (PLR) λ is defined as

$$\lambda(\mu) = \frac{L(\hat{\mu}, \hat{\theta})}{L(\bar{\mu}, \hat{\theta})},$$

where the denominator has estimators $\hat{\mu}$ and $\hat{\theta}$ that maximise the likelihood, and the numerator has estimators $\bar{\mu}$ that maximise the likelihood for the specified signal strength μ. The signal strength is obtained after maximising $\lambda(\mu)$ in Eq. (2). This approach allows us to parameterise the effect of the systematic uncertainties in the fit.

The signal strength μ is determined independently in each category, i.e. for each dilepton channel and jet multiplicity. For each category, the purity of the selected sample (f_{fit}) is defined as the fraction of “true” $t\bar{t}$ signal events in the selected sample, $f_{\text{fit}} = \mu \cdot N_{\text{exp}}/N_{\text{obs}}$, where N_{exp} is the number of expected $t\bar{t}$ events, and N_{obs} is the total number of observed events. By performing the fit for each category, the purity of the sample is obtained. The results are summarised in Table 2. As expected, the μ_1 category has the highest purity (≈90%). Because of the contamination from DY events, the same-flavour channels have lower purity (≈70%). Overall, the signal purity increases with higher jet multiplicity.

As a cross-check, a fit including all categories, gives the range $0.909 < \mu < 1.043$ at the 68% confidence level (CL). This leads to a $t\bar{t}$ production cross section of

$$\sigma(t\bar{t}) = 238 \pm 1 \text{ (stat.)} \pm 15 \text{ (syst.) pb},$$

in good agreement with NNLO + NNL expectation [29] and the latest CMS measurement [52]. The result is also found to be consistent with the individual results obtained in each event category. An extra uncertainty is assigned in the extrapolation of the cross section to the full phase space because of the dependence of the
acceptance on μ_R/μ_F, ME-PS threshold choices, and the top-quark mass.

The relative single-top-quark contribution (k_α), defined as the ratio of the expected number of single-top-quark events to the estimated number of inclusive $t\bar{t}$ events, is also shown in Table 2 for each category. For this determination we use the expected number of single-top-quark events obtained after maximising the PLR in Eq. (2). The contribution due to single-top-quark events tends to be most significant in the two-jet category ($<7\%$ relative to inclusive $t\bar{t}$ events). Since the estimate is obtained for a specific scenario in which $\mathcal{R} = 1$, an extra linear dependence of k_α on \mathcal{R} is introduced in order to account for the increase in the tW cross section as $|V_{tb}|$ becomes smaller while $|V_{td}|$ and $|V_{ts}|$ become larger [4]. In this parameterisation, the measured ratio $|V_{td}|/|V_{ts}| = 0.211 \pm 0.006$ is used [3], and the uncertainty is considered as an intrinsic systematic uncertainty in the measurement of \mathcal{R}.

6. Probing the b-flavour content

In this section the b-flavour content of the selected events (both signal and background) is determined from the b-tagged jet multiplicity distribution. The probability of incorrectly assigning a jet must be evaluated (Section 6.1) in order to correctly estimate the heavy-flavour content of top-quark decays (Section 6.2).

The b-tagging algorithm that is used (the combined secondary vertex, CSV method described in Ref. [53]) is a multivariate procedure in which both information on the transverse impact parameter with respect to the primary vertex of the associated tracks, and the reconstructed secondary vertices is used to discriminate b jets from c, light-flavour (u, d, s), and gluon jets. The b-tagging efficiency (ϵ_b) is measured [54] using multijet events where a muon is reconstructed inside a jet; a data-to-simulation scale factor is derived and is used to correct the predicted ϵ_b value in the $t\bar{t}$ dilepton sample from simulation. After correction, the expected efficiency in the selected $t\bar{t}$ sample is $\approx 84\%$, and the uncertainty in the scale factor from the data is $1-3\%$, depending on the kinematics of the jets [54]. The same scale factor is applied to the expected c-tagging efficiency but with a doubled uncertainty with respect to the one assigned to b jets owing to the fact that no direct measurement of the c-tagging efficiency is performed. For jets originating from the hadronisation of light-flavour jets, the misidentification efficiency (k_q) is evaluated [53] from so-called negative tags in jet samples, which are selected using tracks that have a negative impact parameter or secondary vertices with a negative decay length. The scalar product of the jet direction with the vector pointing from the primary vertex to the point of closest approach of a track with negative impact parameter has the opposite sign of the scalar product taken with respect to the point of closest approach. The data-to-simulation correction factor for the misidentification efficiency is known with an uncertainty of about 11%, and the expected misidentification efficiency in the selected sample is approximately 12% [54].

Fig. 2 shows the number of b-tagged jets in the selected dilepton data sample, compared to the expectations from simulation. The multiplicity is shown separately for each dilepton channel and jet multiplicity. The expected event yields are corrected after the PLR fit for the signal strength (described in the previous section).
and also incorporate the data-to-simulation scale factors for ε_9 and ε_6. Data and simulation agree within 5%. The residual differences can be related to the different number of jets selected from top-quark decays in data and simulation, the modeling of gluon radiation (ISR/FSR) and if R is different from unity (which is an assumption used in the simulation).

6.1. Jet misassignment

There is a non-negligible probability that at least one jet from a $t \bar{t}$ decay is missed, either because it falls outside of the detector acceptance or is not reconstructed, and another jet from a radiative process is chosen instead. In the following discussion, this is referred to as a “misassigned jet”. Conversely, jets that come from a top-quark decay will be referred to as “correctly assigned”. The rate of correct jet assignments is estimated from the data using a combination of three different categories:

- events with no jets selected from top-quark decays, which also include background events with no top quarks;
- events with only one jet from a top-quark decay, which includes some $t \bar{t}$ events and single-top-quark events (mainly produced through the tW channel);
- events with two jets produced from the two top-quark decays.

In order to avoid model uncertainties, the number of selected jets from top-quark decays is derived from the lepton-jet invariant-mass (M_{ij}) distribution, reconstructed by pairing each lepton with all selected jets. For lepton-jet pairs originating from the same top-quark decay, the endpoint of the spectrum occurs at $M_{ij} = \sqrt{M_t^2 - M_W^2} \approx 153$ GeV [55], where M_t (M_W) is the top-quark (W boson) mass (Fig. 3, top, open histogram). The predicted distribution for correct pairings is obtained after matching the simulated reconstructed jets to the b quarks from $t \rightarrow Wb$ at the generator level using a cone of radius $R = 0.3$. The same quantity calculated for a jet from a top-quark decay paired with a jet from the top antiquark decay and vice versa (“wrong” pairing) shows a distribution with a long tail (Fig. 3, top, filled histogram), which can be used as a discriminating feature. A similar tail is observed for “unmatched” pairings: either background processes without top quarks, or leptons matched to other jets. The combinations with $M_{ij} > 180$ GeV are dominated by incorrectly paired jets, and this control region is used to normalise the contribution from background.

In order to model the lepton-jet invariant-mass distribution of the misassigned jets, an empirical method is used based on the assumption of uncorrelated kinematics. The validity of the method has been tested using simulation. For each event in data, the momentum vector of the selected lepton is “randomly rotated” with uniform probability in the $(\cos(\theta),\phi)$ phase space, and the M_{ij} is recomputed. This generates a combinatorial distribution that is used to describe the true distribution of M_{ij} for misassigned jets. Fig. 3 (bottom) compares the data distribution with the two components of the M_{ij} spectrum, i.e. “correct assignments” from simulation and “wrong assignments” modelled from the data. The background model provides a good estimate of the shape of the spectrum of the misassigned lepton-jet pairs. After fitting the fractions of the two components to the data, the “misassigned” contribution is subtracted from the inclusive spectrum, and the result is compared to the expected contribution from the correctly assigned lepton-jet pairs. The result of this procedure is shown in the inset of Fig. 3 (bottom). This method is used to determine the fraction (f_{correct}) of selected jets from top-quark decays in the M_{ij} spectrum. Consequently, by measuring f_{correct}, we estimate directly from the data the number of top-quark decays reconstructed and selected. Notice that f_{correct} cannot be larger than $1/n$ for events with n jets, as it includes the combinatorial contribution by definition.

In Table 3 the values of f_{correct} found in the data are compared to those predicted from simulation. These include both the
where the subscripts (2j, 2t, 2d) indicate a two-jet event, with two b-tagged jets, and two top-quark decays. If instead, only one jet from a top-quark decay is present in the event, the probability is modified to take the second jet into account in the measurement of R. In this case, the probability of observing two b-tagged jets is

$$P_{2j,2t,1d} = R^2 \epsilon_b^2 \epsilon_{q_1} + R(1 - R)(\epsilon_b + \epsilon_q)\epsilon_{q_1} + (1 - R)^2 \epsilon_q^2 \epsilon_{q_2},$$

(4)

where ϵ_{q_1} is the effective misidentification rate, and is computed by taking into account the expected flavour composition of the “extra” jets in the events (i.e., those not matched to a top-quark decay). The effective misidentification rate is derived specifically for each event category. From simulation, these extra jets are expected to come mostly from light-flavour jets ($\approx 87\%$). For completeness, for the case in which no jet from top-quark decay is reconstructed, the probability of observing two b-tagged jets is

$$P_{2j,2t,0d} = \epsilon^2_{q_2}.$$

(5)

For each dilepton channel and jet multiplicity, analogous expressions are derived and combined using the probabilities α_i of having i reconstructed jets from top-quark decays. Additional terms are added to extend the model to events with more than two jets. All efficiencies are determined per event category, after convolving the corrections from dijet events in the data with the expected efficiencies (ϵ_q and ϵ_b) and the simulated jet p_T spectrum.

For the measurement of R, a binned-likelihood function is constructed using the model described above and the observed b-tagging multiplicity in events with two, three, or four observed jets in the different dilepton channels. A total of 36 event categories, corresponding to different permutations of three lepton-flavour pairs, three jet multiplicities, and up to four observed b-tagged jets are used (see Fig. 2). The likelihood is generally written as

$$L(R; f_{\ell\ell}, k_{\text{stat}}, f_{\text{correct}}, \epsilon_b, \epsilon_q, \theta_i) = \prod_{\ell\ell} \prod_{N_{\text{jets}}=2, \ldots, 4} \prod_k \mathcal{P}(N_{\text{ev}}(\ell\ell, N_{\text{jets}}(k)), N_{\text{ev}}^{(\ell\ell,N_{\text{jets}})}(k)) \prod_i G(\theta^0, \theta_i, 1).$$

(6)

where $N_{\text{ev}}^{(\ell\ell,N_{\text{jets}})}$ is the number of observed (expected) events with k b-tagged jets in a given dilepton channel ($\ell\ell = ee, \mu\mu, e\mu$) with a given jet multiplicity (N_{jets}), θ_i are the nuisance parameters (a total of 33, which will be discussed later), and G is a Gaussian distribution. For the nominal fit, the nuisance parameters are assumed to be unbiased ($\theta^0 = 0$) and normally distributed. The nuisance parameters parameterise the effect of uncertainties, such as JES and JER, b-tagging and misidentification rates, and μ_b/μ_k scales, amongst others, on the input parameters of the likelihood function. The most likely value for R is found after profiling the likelihood using the same technique described in Section 5. The result of the fit is verified to be unbiased in simulation, by performing pseudo-experiments with dedicated MC samples where R is varied in the [0, 1] interval. The residual difference found from these tests is assigned as a model calibration uncertainty.

6.3. Measurement of R

In the fit, R is allowed to vary without constraints. The parameters of the model are all taken from the data: $f_{\ell\ell}$ and k_{stat} are
taken from Table 2, f_{correct} is taken from Table 3, ϵ_b and ϵ_q from dijet-based measurements [53], and ϵ_{q_t} is derived following the method described in the previous section. Fig. 5 shows the resulting prediction for the fraction of events with different numbers of observed b-tagged jets as a function of R. The individual predictions for all categories are summed to build the inclusive model for the observation of up to four b-tagged jets in the selected events.

Fig. 6 shows the results obtained by maximising the profile likelihood. The combined measurement of R gives $R = 1.014 \pm 0.003 \, (\text{stat.}) \pm 0.032 \, (\text{syst.})$, in good agreement with the SM prediction. Fits to the individual channels give consistent results. For these, we obtain values of $R_{ee} = 0.997 \pm 0.007 \, (\text{stat.}) \pm 0.035 \, (\text{syst.})$, $R_{\mu\mu} = 0.996 \pm 0.007 \, (\text{stat.}) \pm 0.034 \, (\text{syst.})$, and $R_{e\mu} = 1.015 \pm 0.003 \, (\text{stat.}) \pm 0.031 \, (\text{syst.})$ for the ee, $\mu\mu$, and $e\mu$ channels, respectively. The measurement in the $e\mu$ channel dominates in the final combination since the main systematic uncertainties are fully correlated and this channel has the lowest statistical uncertainty.

The total relative uncertainty in the measurement of R is 3.2%, and is dominated by the systematic uncertainty, whose individual contributions are summarised in Table 4. The largest contribution to the systematic uncertainty is from the b-tagging efficiency measurement. Additional sources of uncertainty are related to the determination of the purity of the sample (f_{fit}) and the fraction of correct assignments (f_{correct}) from the data; these quantities are affected by theoretical uncertainties related to the description of tt events, which have similar impact on the final measurement, such as μ_R/μ_F, ME-PS, signal generator, top-quark mass, and top-quark p_T. Instrumental contributions from JES and JER, modelling of the unclustered E_T^{miss} component in simulation, and the contribution from the DY and misidentified-lepton backgrounds are each estimated to contribute a relative systematic uncertainty $<0.6%$.

Another source of uncertainty is due to the contribution from extra sources of heavy-flavour production, either from gluon splitting in radiated jets or from decays in background events such as $W \rightarrow cs$. This effect has been estimated in the computation of ϵ_{q_t} by assigning a conservative uncertainty of 100% to the c and b contributions. The effect of the uncertainty in the misidentification efficiency is estimated to be small ($<1\%$), as well as other sources of uncertainty, such as pileup and integrated luminosity. After the fit is performed no nuisance parameter is observed to change by more than 1.5σ. The most relevant systematic uncertainty (ϵ_b) is moved by -0.5σ as a result of the fit.

If the three-generation CKM matrix is assumed to be unitary, then $R = |V_{ts}|^2$ [4]. By performing the fit in terms of $|V_{ts}|$, a value of $|V_{ts}| = 1.007 \pm 0.016$ (stat. + syst.) is measured. Upper and lower endpoints of the 95% CL interval for R are extracted by using the Feldman–Cousins (FC) frequentist approach [57]. The implementation of the FC method in RooStats [58] is used to compute the interval. All the nuisance parameters (including ϵ_b) are profiled in order to take into account the corresponding uncertainties (statistical and systematic). If the condition $R \leq 1$ is imposed, we obtain $R > 0.955$ at the 95% CL. Fig. 7 summarises the expected limit
bands for 68% CL, 95% CL, and 99.7% CL, obtained from the FC method. The expected limit bands are determined from the distribution of the profile likelihood obtained from simulated pseudo-experiments. The upper and lower acceptance regions constructed in this procedure are used to determine the endpoints on the allowed interval for \(R \). In the pseudo-experiments the expected signal and background yields are varied using Poisson probability distributions for the statistical uncertainties and Gaussian distributions for the systematic uncertainties. By constraining \(|V_{tb}| \leq 1 \), a similar procedure is used to obtain \(|V_{tb}| > 0.975 \) at the 95% CL.

6.4. Indirect measurement of the top-quark total decay width

The result obtained for \(R \) can be combined with a measurement of the single-top-quark production cross section in the t-channel to yield an indirect determination of the top-quark total width \(\Gamma_t \). Assuming that \(\sum_q B_q(t \to Wq) = 1 \), then \(R = B(t \to Wb) \) and

\[
\Gamma_t = \frac{\sigma_{t-ch} \Gamma(t \to Wb)}{B(t \to Wb)} \frac{\sigma_{t-ch}}{\sigma_{t-ch}^{\text{th}}},
\]

where \(\sigma_{t-ch} \) (\(\sigma_{t-ch}^{\text{th}} \)) is the measured (theoretical) t-channel single-top-quark cross section and \(\Gamma(t \to Wb) \) is the top-quark partial decay width to Wb. If we assume a top-quark mass of 172.5 GeV, then the theoretical partial width of the top quark decaying to Wb is \(\Gamma(t \to Wb) = 1.329 \) GeV [3]. A fit to the b-tagged jet multiplicity distribution in the data is performed, leaving \(\Gamma_t \) as a free parameter. In the likelihood function we use the theoretical prediction for the t-channel cross section at \(\sqrt{s} = 7 \) TeV from Ref. [59] and the corresponding CMS measurement from Ref. [25].

The uncertainties in the predicted and measured cross sections are taken into account as extra nuisance parameters in the fit. The uncertainty in the theoretical cross section is parameterised by convolving a Gaussian function for the PDF uncertainty with a uniform prior describing the factorisation and renormalisation scale uncertainties. Some uncertainties in the experimental cross section measurement such as those from JES and JER, b-tagging efficiency \(\mu_b/\mu_c \) scales, and ME-PS threshold for t channel are fully correlated with the ones assigned to the measurement of \(R \). All others are summed in quadrature and assumed to be uncorrelated. After performing the maximum-likelihood fit, we measure

\[\Gamma_t = 1.36 \pm 0.02 \text{ (stat.)}^{+0.14}_{-0.11} \text{ (syst.) GeV}, \]

in good agreement with the theoretical expectation [3]. The dominant uncertainty comes from the measurement of the t-channel cross section, as summarised in Table 5.

7. Summary

A measurement of the ratio of the top-quark branching fractions \(R = B(t \to Wb)/B(t \to Wq) \), where the denominator includes the sum over the branching fractions of the top quark to a W boson and a down-type quark (\(q = b, s, d \)), has been performed using a sample of tt dilepton events. The sample has been selected from proton–proton collision data at \(\sqrt{s} = 8 \) TeV from an integrated luminosity of 19.7 fb\(^{-1}\), collected with the CMS detector. The b-tagging and misidentification efficiencies are derived from multijet control samples. The fractions of events with 0, 1, or 2 selected jets from top-quark decays are determined using the lepton-jet invariant-mass spectrum and an empirical model for the misassignment contribution. The unconstrained measured value of \(R = 1.014 \pm 0.003 \text{ (stat.)} \pm 0.032 \text{ (syst.)} \) is consistent with the SM prediction, and the main systematic uncertainty is from the b-tagging efficiency (\(\approx 2.4\% \)). All other uncertainties are <1%. A lower limit of \(R > 0.955 \) at 95% CL is obtained after requiring \(R \leq 1 \) and taking into account both statistical and systematical uncertainties. This result translates into a lower limit \(|V_{tb}| > 0.975 \) at 95% CL when assuming the unitarity of the three-generation CKM matrix. By combining this result with a previous CMS measurement of the t-channel production cross section for single top quarks, an indirect measurement of the top-quark total decay width \(\Gamma_t = 1.36 \pm 0.02 \text{ (stat.)}^{+0.14}_{-0.11} \text{ (syst.) GeV} \) is obtained, in agreement with the SM expectation. These measurements of \(R \) and \(\Gamma_t \) are the most precise to date and the first obtained at the LHC.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); Fonds De La Recherche Scientifique - FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia);
Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFRF (Russia); MESTD (Serbia); SEIDI and CNPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie pro- gramme and the European Research Council and EPLANET (Euro- pean Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Turin); the HOMING PLUS programme of Foundation For Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU–ESF and the Greek NSRF.

References

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussels, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Université de Mons, Mons, Belgium

G.A. Alves, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, São Paulo, Brazil

Universidade Federal do ABC, São Paulo, Brazil

V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

Technical University of Split, Split, Croatia

Z. Antunovic, M. Kovac

University of Split, Split, Croatia

V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Sudic

Institute Rudjer Boskovic, Zagreb, Croatia

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis
University of Cyprus, Nicosia, Cyprus

M. Bodlak, M. Finger, M. Finger Jr.
Charles University, Prague, Czech Republic

Y. Assran9, A. Ellithi Kamel10, M.A. Mahmoud11, A. Radi12,13
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, G. Fedi, M. Voutilainen
Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

T. Tuuva
Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

S. Gadrat
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS–IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Z. Tsamalaidze15
Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, J. Physikalisches Institut, Aachen, Germany
S.K. Swain
National Institute of Science Education and Research, Bhubaneswar, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, A.K. Kalsi, M. Kaur, M. Mittal, N. Nishu, J.B. Singh
Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma
University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, R.K. Dewanjee, S. Dugad
Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Bakhshiansohi, H. Behnamin, S.M. Etesami, A. Fahim, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Pakhtinat Mehdiaabadi, B. Safarzadeh, M. Zeinali
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald
University College Dublin, Dublin, Ireland

G. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

H. Bakhshiansohi, H. Behnamin, S.M. Etesami, A. Fahim, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Pakhtinat Mehdiaabadi, B. Safarzadeh, M. Zeinali
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
G. Barbagli a, V. Ciulli a,b, C. Civinini a, R. D'Alessandro a,b, E. Focardi a,b, E. Gallo a, S. Gonzi a,b, V. Gori a,b, P. Lenzi a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a,b

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

F. Ferro a, M. Lo Vetere a,b, E. Robutti a, S. Tosi a,b

a INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy

M.E. Dinardo a,b, S. Fiorendi a,b, S. Gennai a, R. Gerosa, A. Ghezzi a,b, P. Govoni a,b, M.T. Lucchini a,b, S. Malvezzì a, R.A. Manzoni a,b, A. Martelli a,b, B. Marzocchi, D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, T. Tabarelli de Fatis a,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempo a, N. Cavallo a,c, S. Di Guida a,d, F. Fabozzi a,c, A.O.M. Iorio a,b, L. Lista a, S. Meola a,d, M. Merola a, P. Paolucci a,d

a INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli 'Federico II', Napoli, Italy
c Università della Basilicata (Potenza), Napoli, Italy
d Università G. Marconi (Roma), Napoli, Italy

P. Azzi a, N. Bacchetta a, D. Bisello a,b, A. Branca a,b, R. Carlin a,b, P. Checchia a, T. Dorigo a, U. Dosselli a, M. Galanti a,b, F. Gasparini a,b, U. Gasparini a,b, F. Gonella a, A. Gozzelino a, K. Kanishchev a,c, S. Lacaprara a, M. Margoni a,b, A.T. Meneguzzo a,b, J. Pazzini a,b, N. Pozzobon a,b, P. Ronchese a,b, F. Simonetto a,b, E. Torassa a, M. Tosi a,b, P. Zotto a,b, A. Zucchetta a,b, G. Zumerle a,b

a INFN Sezione di Padova, Padova, Italy
b Università di Padova, Padova, Italy
c Università di Trento (Trento), Padova, Italy

d Università di Trento (Trento), Padova, Italy

M. Gabusi a,b, S.P. Ratti a,b, C. Riccardi a,b, P. Salvini a, P. Vitulo a,b

a INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

c Università di Perugia, Perugia, Italy

M. Biasini a,b, G.M. Bilei a, L. Fanò a,b, P. Lariccia a,b, G. Mantovani a,b, M. Menichelli a, F. Romeo a,b, A. Saha a, A. Santocchia a,b, A. Spiezia a,b

a INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy

c Scuola Normale Superiore di Pisa, Pisa, Italy

K. Androssov a, P. Azzurri a, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, M.A. Ciocci a, R. Dell'Orso a, S. Donato a,c, F. Fiori a,c, L. Foà a,c, A. Giassi a, M.T. Grippa a,b, F. Ligabue a,c, T. Lomtadze a, L. Martini a,b, A. Messineo a,b, C.S. Moon a, F. Palla a,d, A. Rizzi a,b, A. Savoy-Navarro a, A.T. Serban a, P. Spagnolo a, P. Squillaciotti a,b, R. Tenchini a, G. Tonelli a,b, A. Venturi a, P.G. Verdini a, C. Vernieri a,c

a INFN Sezione di Pisa, Pisa, Italy
b Università di Pisa, Pisa, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

d Università di Pisa, Pisa, Italy

e INFN Sezione di Roma, Roma, Italy

F. Santanastasio a,b, F. Cavallari a, D. Del Re a,b, M. Diemoz a, M. Grassi a,b, C. Jorda a, E. Longo a,b, F. Margaroli a,b, P. Meridiani a, F. Micheli a,b, S. Nourbakhsh a,b, G. Organtini a,b, R. Paramatti a, S. Rahatlou a,b, C. Rovelli a, F. Santanastasio a,b, L. Soffi a,b, P. Traczyk a,b

a INFN Sezione di Roma, Roma, Italy
b Università di Roma, Roma, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia,2, G.L. Pinna Angionia,b, A. Potenzaa,b, N. Pastronea, M. Pelliccionia,b, A. Staianoa, U. Tamponia

a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
c Università del Piemonte Orientale (Novara), Torino, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Schizzia,b, T. Umera,b, A. Zanettia

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

S. Chang, S.K. Nam
Kangwon National University, Chunchon, Republic of Korea

D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son
Kyungpook National University, Daegu, Republic of Korea

J.Y. Kim, S. Song
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh
Korea University, Seoul, Republic of Korea

M. Choi, J.H. Kim, I.C. Park, S. Park, G. Ryu, M.S. Ryu
University of Seoul, Seoul, Republic of Korea

Y. Choi, Y.K. Choi, J. Goh, E. Kwon, J. Lee, H. Seo, I. Yu
Sungkyunkwan University, Suwon, Republic of Korea

A. Juodagalvis
Vilnius University, Vilnius, Lithuania

J.R. Komaragiri
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

I. Pedraza, H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler, S. Reucroft

University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaib

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

PN. Lebedev Physical Institute, Moscow, Russia

A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, M. Djordjevic, M. Ekmedzic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, B. Isildak47, M. Kaya48, O. Kaya48

Bogazici University, Istanbul, Turkey

H. Bahtiyar49, E. Barlas, K. Cankocak, F.I. Vardarlı, M. Yücel

Istanbul Technical University, Istanbul, Turkey

L. Levchuk, P. Sorokin

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

Baylor University, Waco, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

J. Gronberg, D. Lange, F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

J.G. Acosta, S. Oliveros

University of Mississippi, Oxford, USA

University of Nebraska–Lincoln, Lincoln, USA

J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

E. Brownson, H. Mendez, J.E. Ramirez Vargas

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

N. Parashar, J. Stupak
Purdue University Calumet, Hammond, USA

A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

Rice University, Houston, USA

B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy

University of Rochester, Rochester, USA

R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

The Rockefeller University, New York, USA

Rutgers, The State University of New Jersey, Piscataway, USA

K. Rose, S. Spanier, A. York

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

† Deceased.
1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
3 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
4 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
5 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
6 Also at Universidade Estadual de Campinas, Campinas, Brazil.
7 Also at California Institute of Technology, Pasadena, USA.
8 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France.
Also at Suez University, Suez, Egypt.
10 Also at Cairo University, Cairo, Egypt.
11 Also at Fayoum University, El-Fayoum, Egypt.
12 Also at British University in Egypt, Cairo, Egypt.
13 Now at Ain Shams University, Cairo, Egypt.
14 Also at Université de Haute Alsace, Mulhouse, France.
15 Also at Joint Institute for Nuclear Research, Dubna, Russia.
16 Also at Brandenburg University of Technology, Cottbus, Germany.
17 Also at The University of Kansas, Lawrence, USA.
18 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
19 Also at Eötvös Loránd University, Budapest, Hungary.
20 Also at University of Debrecen, Debrecen, Hungary.
21 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
22 Now at King Abdulaziz University, Jeddah, Saudi Arabia.
23 Also at University of Visva-Bharati, Santiniketan, India.
24 Also at University of Ruhuna, Matara, Sri Lanka.
25 Also at Isfahan University of Technology, Isfahan, Iran.
26 Also at Sharif University of Technology, Tehran, Iran.
27 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
28 Also at Università degli Studi di Siena, Siena, Italy.
29 Also at Centre National de la Recherche Scientifique (CNRS) – IN2P3, Paris, France.
30 Also at Purdue University, West Lafayette, USA.
31 Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
32 Also at National Centre for Nuclear Research, Swierk, Poland.
33 Also at Institute for Nuclear Research, Moscow, Russia.
34 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
35 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
36 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
37 Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy.
38 Also at University of Athens, Athens, Greece.
39 Also at Paul Scherrer Institut, Villigen, Switzerland.
40 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
41 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
42 Also at Gaziosmanpasha University, Tokat, Turkey.
43 Also at Adiyaman University, Adiyaman, Turkey.
44 Also at Cag University, Mersin, Turkey.
45 Also at Mersin University, Mersin, Turkey.
46 Also at Izmir Institute of Technology, Izmir, Turkey.
47 Also at Ozyegin University, Istanbul, Turkey.
48 Also at Kafkas University, Kars, Turkey.
49 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
50 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
51 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
52 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
53 Also at Argonne National Laboratory, Argonne, USA.
54 Also at Erzincan University, Erzincan, Turkey.
55 Also at Yildiz Technical University, Istanbul, Turkey.
56 Also at Texas A&M University at Qatar, Doha, Qatar.
57 Also at Kyungpook National University, Daegu, Republic of Korea.