Search for Long-Lived Massive Charged Particles in 1.96 TeV pp-bar Collisions

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.103.021802</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Oct 17 04:24:58 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/51872</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for Long-Lived Massive Charged Particles in 1.96 TeV $p\bar{p}$ Collisions

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6 Instituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
7 University of Bologna, I-40127 Bologna, Italy
8 Brandeis University, Waltham, Massachusetts 02254, USA
9 University of California, Davis, Davis, California 95616, USA
10 University of California, Los Angeles, Los Angeles, California 90024, USA
11 University of California, San Diego, La Jolla, California 92093, USA
12 University of California, Santa Barbara, Santa Barbara, California 93106, USA
13 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
14 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708, USA
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
19 University of Florida, Gainesville, Florida 32611, USA
20 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Glasgow University, Glasgow G12 8QQ, United Kingdom
23 Harvard University, Cambridge, Massachusetts 02138, USA

PRL 103, 021802 (2009) PHYSICAL REVIEW LETTERS week ending 10 JULY 2009

021802-2
We performed a signature-based search for long-lived charged massive particles produced in 1.0 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, collected with the CDF II detector using a high transverse-momentum (p_T) muon trigger. The search used time of flight to isolate slowly moving, high-p_T particles. One event passed our selection cuts with an expected background of 1.9 ± 0.2 events. We set an upper bound on the production cross section and, interpreting this result within the context of a stable scalar top-quark model, set a lower limit on the particle mass of 249 GeV/c2 at 95% C.L.
Most searches for massive particles arising from physics beyond the standard model (SM) rely upon the assumption that the particles decay immediately. Long-lived or stable non-SM states could exist, however, due to a new symmetry [1], a weak coupling [2], a kinematic constraint [3], or a potential barrier [4]. If the lifetime is long compared to the transit time through the detector, then the particle may escape the detector, thereby evading the limits imposed by direct searches for decay products. However, a charged, massive long-lived particle (CHAMP) will be directly observable within the detector through the distinctive signature of a slowly moving, high transverse-momentum (p_T) particle. The low velocity results in a long time of flight (TOF) and an anomalously large ionization-energy loss rate (dE/dx). Since the particle loses energy primarily through low-momentum-transfer interactions, even if strongly interacting [5,6], it will be highly penetrating and will likely be reconstructed as a muon.

Previous CHAMP search results have been presented within the context of a variety of models [7–10]. CDF in Run I, for instance, used dE/dx and set 95% C.L. lower mass limits on stable fourth-generation down-type (190 GeV/c^2) and up-type (220 GeV/c^2) quarks [7]. The ALEPH experiment also used dE/dx to exclude a stable scalar top squark (\tilde{t}), the supersymmetric partner of the top quark, with a mass below 95 GeV/c^2 at 95% C.L. [8]. A combined result from the LEP2 experiments excluded a stable supersymmetric partner for SM leptons with a mass below 99.5 GeV/c^2 at 95% C.L. [9].

In this Letter, we present a blind signature-based search for isolated CHAMPs promptly produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV with the CDF II detector [11] at the Fermilab Tevatron. Using an integrated luminosity of 1.0 fb$^{-1}$ of $p\bar{p}$ collisions collected with a high p_T muon trigger, the analysis isolated CHAMP candidates by calculating their mass from their measured velocity and momentum. We interpret the residuals to the track fit in the COT can be used to estimate the t_0 and track β with resolutions that are about a factor of 3 worse than those made with the TOF detector, but that are reliably parametrized by single Gaussian distributions. Requiring that the event t_0 and candidate track β measurements from the TOF detector and COT agree reduces this background.

Cosmic-ray muons are uncorrelated in time with $p\bar{p}$ interactions and present a potentially serious background. In a sample of 1.5×10^5 cosmic rays, only four pass the CHAMP selection. After applying a cosmic-ray filter [18], from reaching the muon detectors [17] positioned beyond the calorimeters.

Our data sample was collected with a trigger that identifies muon candidates with $|\eta| < 0.7$ and $p_T > 18$ GeV/c. An event entered the analysis if the highest-p_T muon candidate reconstructed offline had $p_T > 20$ GeV/c, originated from the most energetic $p\bar{p}$ collision, passed quality criteria that reduce backgrounds from punchthrough and particles that decay in-flight, and satisfied a calorimeter energy isolation criterion in which the ratio $\sum E_T(0.4)/p_{T}(\text{muon}) < 0.1$, where $\sum E_T(0.4)$ is the sum of transverse energy within a cone of $\Delta R = 0.4$ around the candidate’s direction, excluding the energy deposited by the candidate itself.

We assign the selected events to signal or control sub-samples depending upon whether the track of the highest-p_T muon candidate is a signal-region ($p_T > 40$ GeV/c) or control-region ($20 < p_T < 40$ GeV/c) track. The second-highest-p_T muon candidate (or the highest-p_T nonmuon track in events with only one muon candidate) is also a signal- or control-region track if it is in the same p_T region and originates from the same vertex as the first muon candidate. Tracks with $p_T < 20$ GeV/c are used to measure the $p\bar{p}$ interaction time (t_0) and are referred to as “t_0 tracks.” The event t_0, which is needed to determine the velocity of signal- and control-region tracks, is estimated using a maximum likelihood fit to all t_0 tracks from an interaction vertex, simultaneously taking into account all possible mass hypotheses. The t_0 resolution of single tracks is about 120 ps, so a single t_0 track is adequate to obtain the interaction time.

To separate a CHAMP signal from background, we use the velocity and momentum to calculate the mass of the candidate particle. In events with two signal-region or control-region tracks, both are considered. The track velocity for all candidate and control-region tracks is measured by dividing the path length of the track by its TOF. The measured average velocity, $\beta = v/c$, and single-track resolution of control-region tracks is 1.000 ± 0.029, but with significant non-Gaussian tails. For signal-region tracks, we require $\beta < 0.9$ to suppress SM particles.

The non-Gaussian tails in the time resolution functions introduce a large background to the CHAMP candidate sample. The residuals to the track fit in the COT can be used to estimate the t_0 and track β with resolutions that are about a factor of 3 worse than those made with the TOF detector, but that are reliably parametrized by single Gaussian distributions. Requiring that the event t_0 and candidate track β measurements from the TOF detector and COT agree reduces this background.
we expect negligible residual cosmic-ray background. The filter removes less than 1% of signal events.

We estimate the efficiency for identifying a CHAMP candidate within our two scenarios. In general, CHAMPs are expected to have very large \(p_T \) and be highly isolated. Final-state radiation is strongly suppressed, even if the CHAMP is strongly interacting [5]. These characteristics make \(W \rightarrow l\nu \) and \(Z \rightarrow l^+l^- \) events, where \(l \) is either an electron or muon, reasonable models for both the isolated CHAMP track and the underlying event.

We use the muons in \(Z \rightarrow \mu^+\mu^- \) events selected from the original trigger sample to measure the trigger and track reconstruction efficiency for a single muon to be \((94.0 \pm 0.3)\% \). To study the \(\beta \) dependence of the tracking efficiency, we isolate slow deuterons and pions using \(dE/dx \) in the tracking detector and measure the ratio of deuterons to pions, which we assume is constant as a function of \(\beta \). We find that the efficiency is constant for \(\beta > 0.4 \) and drops for slower particles, a result confirmed in a CHAMP Monte Carlo simulation (MC) [19]. We therefore assume a flat efficiency of \((94.0 \pm 0.3)\% \) for \(\beta > 0.4 \) and zero for \(\beta < 0.4 \) for CHAMPs.

Using vertices and electron tracks in \(W \rightarrow e\nu \) events, we determine the efficiency for finding the primary event vertex, calculating an event \(t_0 \), and reconstructing an isolated CHAMP track from the vertex to be \((71.4 \pm 0.2)\% \). The event \(t_0 \) and track-vertex association dominate the losses in this efficiency \((87\% \) and 86%, respectively).

The efficiency for measuring the arrival time in the TOF detector for CHAMP tracks that are within the muon detector acceptance is determined directly from the muon data; for tracks that are not within the muon detector’s acceptance, we use electron tracks in \(W \rightarrow e\nu \) events. Including the efficiency for the TOF result to be consistent with COT timing information, we obtain a TOF measurement efficiency of \((62.8 \pm 2.6)\% \) for tracks within the muon detectors and \((56.3 \pm 2.7)\% \) for other tracks. The criteria used to identify well-measured arrival times account for most of the efficiency loss.

The dominant systematic uncertainties in the efficiencies are a 5% value to cover the effect of errors in the modeling of initial- and final-state radiation and track multiplicities in CHAMP events on the vertex and \(t_0 \) efficiencies, and a 3% uncertainty in the arrival time efficiency to cover differences observed for electrons, muons, and changes in the TOF detector gain during the run.

Strongly interacting CHAMPs are subject to QCD effects [5,6] that can reduce the overall detection efficiency relative to that of weakly interacting CHAMPs. Quarklike CHAMPs, for instance, can hadronize into either charged or neutral color-singlet states. Charge-exchange interactions in the material of the detector can change an initially charged particle into a neutral particle, and vice versa, before it reaches the muon detectors. At least one CHAMP must leave a track segment in both the COT and the muon chambers to satisfy our trigger.

In order to estimate the efficiency loss due to these hadronic effects, we consider the case of an up-quark-like CHAMP, \(Q \), that hadronizes into a \(Q\bar{q} \) or \(\bar{Q}q \) \(R \)-hadron state [20]. The fraction hadronizing into a charged \(R \) hadron is assumed to be \((52.9 \pm 2.9)\% \), based upon the rate for charged \(b \)-meson production measured at CERN LEP [21]. The center-of-mass energy for collisions between a massive \(Q \) moving at low velocity and a light quark is small. As a result, hadronic interactions of the \(R \) hadron with the detector material involve primarily the light quark, while the \(Q \) remains a spectator [5,6]. Since the \(R \) hadron contains a single light valence quark, we assume the interaction length for the \(R \) hadron to be 3 times that for a proton. Under these assumptions, we estimate that the probability that an initially charged \(R \) hadron undergoes rehadronization before reaching the outermost of the two layers of muon detectors is 93%. At each interaction, the \(Q \) rehadronizes according to the same prescription as for the initial hadronization. To estimate the systematic uncertainty, we take the difference between the result above and the efficiency assuming that 100% of \(R \) hadrons rehadronize.

Combining all efficiencies, the net efficiency for detecting a single, weakly interacting CHAMP within the muon trigger acceptance is \((38 \pm 2)\% \); for a strongly interacting up-quark-like CHAMP, the efficiency is \((8.8 \pm 1.6)\% \).

As a reference model we use PYTHIA [19] to calculate the geometric and kinematic acceptance for top-squark pair production. The trigger and detection efficiencies are calculated by combining the single-track and vertex-finding efficiencies as estimated for the case of a single up-quark-like CHAMP with the relative rate at which one or two top-squark \(R \) hadrons are within the fiducial volume of the detector as predicted by the MC calculations. The acceptances for various \(t \) masses are listed in Table I.

Figure 1 shows the observed and predicted mass distribution for tracks in the signal region. The uncertainty in the

<table>
<thead>
<tr>
<th>(t) mass (GeV/c(^2))</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected background</td>
<td>4.7 \pm 0.3</td>
<td>1.9 \pm 0.2</td>
<td>0.8 \pm 0.1</td>
<td>0.37 \pm 0.05</td>
<td>0.18 \pm 0.03</td>
<td>0.09 \pm 0.02</td>
<td>0.05 \pm 0.01</td>
<td>0.03 \pm 0.01</td>
<td>0.016 \pm 0.005</td>
</tr>
<tr>
<td>Observed events</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total acceptance (%)</td>
<td>3.6 \pm 0.5</td>
<td>4.2 \pm 0.5</td>
<td>4.5 \pm 0.6</td>
<td>5.1 \pm 0.7</td>
<td>5.5 \pm 0.8</td>
<td>5.8 \pm 0.8</td>
<td>5.9 \pm 0.9</td>
<td>5.9 \pm 0.8</td>
<td>6.2 \pm 0.9</td>
</tr>
<tr>
<td>Expected limit (fb)</td>
<td>190</td>
<td>120</td>
<td>90</td>
<td>71</td>
<td>61</td>
<td>56</td>
<td>53</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>95% C.L. limit (fb)</td>
<td>160</td>
<td>90</td>
<td>100</td>
<td>60</td>
<td>56</td>
<td>53</td>
<td>52</td>
<td>52</td>
<td>50</td>
</tr>
</tbody>
</table>
β measurement is independent of the momentum for tracks with $\beta = 1$. We therefore obtain an absolute prediction for the background mass distribution for a given set of tracks by convolving the momentum distribution for those tracks with the distribution of $\sqrt{1/\beta^2 - 1}$, normalized to unit area, for control-region tracks. We find agreement between the observed and predicted mass distributions within the control- and signal-region electron tracks and within the control region of the muon sample. The background prediction for the signal region is shown by the band in Fig. 1.

We find one candidate track with a mass above 100 GeV/c^2 and none above 120 GeV/c^2, consistent with the predicted background of 1.9 ± 0.2 events above 100 GeV/c^2. From this result, we set a model-independent upper limit on the production cross section for a single, isolated, weakly interacting CHAMP within the muon trigger acceptance (approximately $|\eta| < 0.7$) with $p_T > 40$ GeV/c, $0.4 < \beta < 0.9$, and a measured mass $m > 100$ GeV/c^2 to be $\sigma < 10$ fb at 95% C.L. Similarly, the cross-section limit for an up-quark-like CHAMP under the same assumptions is $\sigma < 48$ fb at 95% C.L.

To count the number of events consistent with a stable t^\prime of a given mass m_{t^\prime}, we must take into account our mass resolution. For tracks with $\beta > 0.4$ and momenta in the signal region, the mass resolution is determined by the momentum resolution [22], which is well modeled by the MC simulation. We can therefore accurately predict the t^\prime mass line shape. We search for a t^\prime signal by integrating all events within a one-sided window from 0.8m_{t^\prime} upward. Table I shows the resulting number of events as a function of the t^\prime mass. From the estimated efficiencies and the number of observed events, we calculate the 95% C.L. upper limit on the cross section shown in Fig. 2. The band represents the theoretical next-to-leading-order t^\prime pair production cross section, as calculated using the PROSPINO2 program [23]. From the intersection of the edge of the band and the limit curve, we infer a 249 GeV/c^2 95% C.L. lower limit on the mass of a stable t^\prime. This is the most stringent limit to date.

In conclusion, we have used the CDF II TOF and COT systems to measure the masses of highly penetrating, high-p_T tracks. The observed mass distribution is consistent with the expected background, which is dominated by SM particles with mismeasured velocity or momentum. From this result, we set upper limits for the production cross section times acceptance of single weakly (up-quark-like strongly) interacting CHAMPs to be less than 10 (48) fb at 95% C.L. The 95% C.L. lower limit on the mass of a stable top squark is 249 GeV/c^2.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. In particular we thank Steve Mrenna for help with the CHAMP simulation. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[16] We use a coordinate system where ϕ is the azimuthal angle around the beam axis and θ is the polar angle measured with respect to the proton direction. The pseudorapidity, η, is defined by $\eta = -\log\tan(\theta/2)$ and $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$.

[23] See http://www.ph.ed.ac.uk/~tplehn/prospino for details on PROSPINO2. The calculation for top-squark pair production is based upon Ref. [12].