Global Imbalances and Financial Fragility

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1257/aer.99.2.584</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Economic Association</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Dec 06 08:55:22 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/61377</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Global Imbalances and Financial Fragility

By Ricardo J. Caballero and Arvind Krishnamurthy*

The United States is currently engulfed in the most severe financial crisis since the Great Depression. The crisis was triggered by the crash in the real estate “bubble” and amplified by the extreme concentration of risk in a highly leveraged financial sector.

Conventional wisdom is that both the bubble and the risk concentration were the result of mistakes in regulatory policy: an expansionary monetary policy during the boom period of the bubble, and failure to reign in the practices of unscrupulous lenders. In this paper we argue that, while correct in some dimensions, this story misses two key structural factors behind the securitization process that supported the real estate boom and the corresponding leverage. First, over the last decade, the US has experienced large and sustained capital inflows from foreigners seeking US assets to store value (Caballero, Emmanuel Farhi, and Pierre-Olivier Gourinchas 2008). Second, especially after the NASDAQ/tech bubble and bust, excess world savings have looked predominantly for safe debt investments. This should not be surprising because a large amount of the capital flow into the US has been from foreign central banks and governments that are not expert investors and are merely looking for a store of value (Krishnamurthy and Annette Vissing-Jorgenson 2008).

In this paper we develop a stylized model that captures the essence of this environment. The model accounts for three facts observed during the boom and bust phases of the current crisis. First, during a period of good shocks—which we interpret as the period up to the end of 2006—the growth in asset demand pushes up asset prices and lowers risk premia and interest rates. It is interesting to observe that the value of risky assets rises despite the fact that the increase in demand is for riskless assets. Second, foreign demand for debt instruments increases the equilibrium level of leverage of the domestic financial sector. In order to accommodate this demand, the US financial sector manufactures debt claims out of all types of products, which is the reason for the wave of securitization. Third, if shocks turn negative—which we interpret as the post-2006 period—the foreign demand now turns toxic; bad shocks and high leverage lead to an amplified downturn and rising risk premia.

In addition to highlighting the role of capital flows in facilitating the securitization boom, our analysis speaks to the broader issue of global imbalances. Many of the concerns regarding global imbalances derive from emerging markets’ experiences, where capital flows are often speculative and a source of volatility, as emphasized in the literature on sudden stops. Our analysis shows that somewhat paradoxically, for a core economy such as that of the US, the risk in “excessive” capital inflows derives from the opposite concern: capital flows into the country are mostly nonspeculative and in search of safety. As a result, the US sells riskless assets to foreigners and in so doing raises the effective leverage of its financial institutions. In other words, as global imbalances rise, the US increasingly specializes in holding its “toxic waste.”

I. Foreign Flows and Fragility

Time is continuous and indexed by t. There is a continuum of US financial institutions, with mass one, that own assets that generate cash flows of X_t^d per unit time, where

$$dX_t^d/X_t^d = g\, dt + \sigma\, dZ_t,$$

for constants g and σ. We can think of these cash-flows as arising from mortgage loans, credit card loans, auto loans, etc. We assume the...
The cash-flow process is exogenously given and not affected by other developments in the economy. This is certainly counterfactual, but simplifies the analysis of asset market equilibrium. In practice, some of these cash flows were brought onto banks’ balance sheets as a response to the massive demand for assets. Our analysis starts from a moment when these cash flows already exist, but it may also be interesting to model this process as a response to high asset demand. We denote the present value of the cash flows \(X_t \) held by the financial institutions as \(V_t \).

The financial institutions have two liabilities, equity and short-term (instantaneous) debt. We assume there are no bankruptcy costs. Since our model is set in continuous time (and sample paths), this implies that the short-term debt is risk-free.

Our key assumption concerns the demand for the safe debt. The external demand for US assets, from foreign central banks for example, is in particular a demand for high-grade debt. We capture this demand in a reduced-form fashion. We assume that there is a measure one of foreign investors who invest only in the debt of financial institutions. They allocate an exogenous stream of funds, \(dX_t^d = g dt + (1 - \psi)\sigma dZ_t \), to investments in US assets. The stream \(X_t^d \) is perfectly correlated with US income, but for most of our analysis we assume that it is less volatile than domestic income. Hence, \(\psi > 0 \) and capital flows, by themselves, are a source of income stability. We may also think of the case of \(\psi < 0 \) as that corresponding to emerging markets, where capital flows exacerbate the cycle.

Foreigners’ bond holdings are denoted by \(B_t^f \). We also assume that the foreign investors repatriate some of their US invested wealth at the rate \(\rho \). Denote
\[c_t^f = \rho B_t^f \]
as the repatriated flow of resources. Then the dynamics of foreign debt are
\[dB_t^f = (X_t^f - \rho B_t^f) \; dt + r_t B_t^f \; dt. \]

Throughout our analysis we will imagine that there is a date, \(t_0 \), on which the foreign investors’ demand for US debt first arises. We refer to this as the date of foreign entry. We analyze how this entry affects the equilibrium.

The financial institutions’ owners/equity-holders are local investors who maximize preferences:
\[
E_t \int_{t}^{\infty} e^{-\rho(s-t)} \ln c_{t+s}^d \; ds.
\]
The value of their ownership stake in the financial institutions, or the equity value of financial institutions, is
\[W_t = V_t - B_t^f. \]

A simple argument deriving from log preference allows us to derive the equity value. The local investor has wealth \(W_t \) and, given log preference, he consumes \(\rho W_t \). The following accounting identity must hold for cash flows:
\[X_t^d + X_t^f = c_t^d + c_t^f. \]

On the left side is the amount of cash generated by the financial institution plus the amount of foreign savings invested in the US. Thus, it is the total amount of cash inflow into financial institutions. On the right side is the amount consumed by local investors plus the amount of cash repatriated by foreign investors (i.e., cash outflows). This condition is basically a market-clearing condition for the consumption goods. Rewriting yields
\[X_t^d + X_t^f = \rho W_t + \rho B_t^f \]
or
\[W_t = \frac{X_t^d}{\rho} + \frac{X_t^f - \rho B_t^f}{\rho} \]
which implies that the value of the assets held by the financial institutions is
\[c_t + (1 - \rho \delta)E_t[\ln B_t^f]. \]

Note that the utility for bequest is over wealth. If we take \(\delta \to dt \), this model yields the assumed consumption behavior of foreign investors.
\[V_t = \frac{X_t^d + X_t^r}{\rho}. \]

These expressions lead to the first result of the analysis.

PROPOSITION 1 (Asset Demand Effect): An increase in foreign demand for riskless assets, \(X_t^f \), raises the value of risky domestic assets, \(V_t \), and of domestic financial wealth, \(W_t \). An increase in foreign riskless debt, \(B_t^f \), lowers the value of domestic financial wealth.

Consider an initial condition when China begins to invest in US debt so that \(X_t^f \) turns positive. Our proposition shows that this flow will push up the value of US assets and domestic financial wealth in the short run. It explains how the value of US assets rose in the early stages of external demand. This is the asset demand effect highlighted in the riskless environment of Caballero et al. (2008).

We next solve for the interest rate, \(r_t \). Investors can purchase either equity or debt from financial institutions. Thus the interest rate must satisfy the local investor's marginal pricing condition (Euler equation). Going through the usual asset pricing steps based on an investor with consumption \(c_t \), we have

\[r_t = \rho + E_t[dc_t/c_t] - \text{var}_t[dc_t/c_t]. \]

The local investor has log preferences and wealth \(W_t \). Thus,

\[c_t = \rho W_t. \]

We can then compute \(E_t[dW_t/W_t] \) and \(\text{var}_t[dW_t/W_t] \) to find the equilibrium interest rate. Before doing so, let us define the foreign debt-to-asset ratio (leverage) of financial institutions as

\[b_t^f = \frac{B_t^f}{V_t} = \rho \frac{B_t^f}{X_t^f + X_t^d}, \]

and the scaled foreign demand for domestic assets as

\[x_t^f = \frac{X_t^f}{X_t^f + X_t^d}. \]

PROPOSITION 2 (Interest Rate): The interest rate is

\[r_t = (\rho + g - \sigma^2) - \rho x_t^f + \sigma^2 \left(1 - \left(1 - x_t^f \right)^2 \right). \]

The first term in parentheses corresponds to the interest rate in the absence of foreign capital flows. The next two terms capture opposing effects that foreign entry has on the interest rate. The first effect comes from expanding \(E_t[dW_t/W_t] \). Upon entry, asset demand raises and lowers interest rates. (Mechanically, from the Euler equation, local wealth jumps on entry and thereafter grows more slowly, which requires a lower interest rate.) The second effect is from the precautionary savings term \(\text{var}_t[dW_t/W_t] \). When \(\psi > 0 \), external flows reduce domestic volatility because these flows are more stable than local cash flows. This effect raises interest rates, as we can see by examining the precautionary savings term when \(b_t^f = 0 \):

\[\sigma^2 \left(1 - (1 - \psi x_t^f)^2 \right) = \sigma^2 \psi x_t^f (2 - \psi x_t^f). \]

This expression is positive since \(x_t^f < 1 \) and \(\psi > 0 \).

Whether interest rates rise or fall upon foreign entry at \(t_0 \) depends upon parameters. However, as time passes, the precautionary savings effect puts downward pressure on interest rates. To see this, note that over time, as foreign debt accumulates, risk is brought back via an increase in leverage, \(b_t^f \). Since foreign debt holders must be promised a fixed repayment, the domestic equity holders hold a residual claim that becomes riskier as leverage rises. The corresponding rise in precautionary savings reduces interest rates.

The interest rate expression also reveals a contrast between the emerging markets case and the US case. As we have noted, we may think of the emerging markets case as one where foreign inflows are strongly procyclical, so that \(\psi < 0 \). In this case, foreign demand raises local volatility and risk, lowering interest rates through this precautionary savings effect.

Foreign entry, although creating some ambiguity in signing the change in interest rates, has a clear effect on risk premia. Let us consider a hypothetical asset-\(i \), whose return depends on innovations in the risk factor \(dZ_i \):

\[dR_t^i = E_t[dR_t^i]dt + \sigma^i dZ_t. \]
Thus, if we think of \(dZ_t \) as reflecting risk on mortgage loans held by financial institutions, this asset can be thought of as a mortgage-backed security. In general, the asset’s return is correlated with the risks held by financial institutions.

Suppose that this asset is in zero net supply; then let us consider how \(E_t[dR_t^i] \) will be determined. At the margin, if one of the financial institutions purchases this asset, it is taking on more risk, which then affects the risk held by the local investors. Thus, the expected return has to compensate the local investors for bearing additional risk. Since the local investors have wealth of \(W_t \), we have

\[
E_t[dR_t^i] - r_t = \text{cov}_t[dR_t^i, dW_t/W_t]
\]

\[
= \sigma^t \sigma^f (1 - \psi x^f_t) / (1 - b^f_t).
\]

PROPOSITION 3 (Risk Premium): If \(\psi > 0 \), an increase in foreign demand for riskless assets, \(x^f_t \), lowers the risk premium on domestic assets. An increase in foreign leverage, \(b^f_t \), always raises the risk premium.

The intuition here is similar to that offered for the precautionary savings effects. Since \(\psi > 0 \), foreign inflows are more stable than domestic cash flows, and hence the stabilization effect lowers risk premia. This is the immediate effect of foreign flows on domestic risk premia. This effect helps explain why the US experienced a sustained period of low risk premia beginning in 2000.\(^\text{2}\)

Over time, external leverage grows and transfers more residual risk onto domestic equity holders. This effect increases risk premia and as time passes becomes the dominant driver of the risk premium. Moreover, leverage leads to a dynamic amplification mechanism. If US shocks turn negative so that \(X^d_t \) and \(V_t \) fall, the effective leverage, \(b^f_t = B_t/V_t \), rises. Thus the negative shock, through leverage, leads risk premia to rise further. We interpret the magnified downturn beginning in mid-2007 as corresponding to this leverage multiplier effect.

Figure 1 illustrates these results. We set \(g = 0.03, \sigma = 0.20, \rho = 0.04, \psi = 0.5 \), and \(X^d(t_0) = 0.5 X^d(t_0) \). We also use an initial condition for debt upon entry at \(t_0 \) such that \(B(t_0) = V(t_0)/5 \), which helps to see the results pictorially. Time 0 is the date of foreign entry. We plot a particular realization of shocks such that prior to Time 6, \(X^f \) and \(X^d \) grow at rate \(g \), while after Time 6 they grow at rates \(g - 2\sigma \) and \(g - \sigma \), respectively. Thus we interpret Time 6 as the date when shocks turn negative.

The left panel of the figure shows that the risk premium and interest rate fall upon entry. The risk premium rises thereafter as leverage accumulates, rising faster after Time 6. The interest rate uniformly falls as risk accumulates over time. The right panel of the figure shows that the asset value rises upon entry before falling when shocks turn negative.

II. Securitization and Misperceived Safety

How is safe debt created and sold to satisfy debt demand? The model represents safe debt as a short-term claim on financial institutions. Thus the model directly can account for the increase in financial sector leverage ratios in the period preceding the crisis. In practice, debt is also created through the process of securitization: pooling and tranching of mortgage and related assets to form “AAA” senior tranches; and the financial sector writing credit default insurance on risky loans, which is then packaged with the risky loans to form safe debt. The process of safe-debt creation is evident in much of the financial innovation during the last seven years.

The events of the summer of 2007 revealed that some of the safe debt created by financial innovations was not truly safe. The assumptions on cash flow correlations underlying the insurance benefits to the pooling aspect of securitization proved wrong. As a result, senior tranches had higher default exposure than had been perceived by many investors. The institutions that sold credit default insurance ran into trouble, calling into question the value of the credit default insurance they had sold to support the safe status of some debts. In short, safe debt has proven to be unsafe.
The realization of misperceived safety can create a further leverage amplifier. Prior to the investors’ realization, some investors were holding claims they thought were safe-debt but were in fact closer to equity. When investors realized this fact, they shifted their portfolios to sell the “equity” and demand safe debt.

It is straightforward to see the effect of such a portfolio shift: interest rates fall, the risk premium rises, and leverage rises, further exposing the financial sector to negative shocks. This realization of misperceptions effect is consistent with a “flight to quality.”

III. Conclusion

We have presented a model to show how global imbalances has driven the US securitization boom and bust. Since flows into the US have been predominantly seeking safe debt, US financial institutions, in producing the safe debt, have been left holding a levered claim on local mortgage risks. Thus our analysis ties together the behavior of leverage and the demand for US assets. An important aspect of the story that our analysis only touches upon is that in creating safe assets, the US financial sector not only took on more leverage, but also sourced assets (i.e., subprime loans) that carried higher cash flow risks. That is, part of the response to the increase in asset demand was an increase in asset supply, which at the margin may have led to more toxic assets being created. It is likely that this phenomenon, also driven by external demand for US assets, has played a part in the build-up to the current financial crisis.

REFERENCES

This article has been cited by: