A 110W 10Mb/s eTextiles transceiver for body area networks with remote battery power

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
This approach is advantageous, as capacitive-driving reduces output voltage
medium with supply-rail-coupled (SRC) differential transmitters (Fig. 27.6.3).
high impedance resistors, and transmitted signals are AC coupled onto the
communication. To save the energy otherwise required to fully charge and dis-
charge DC voltages on v_+ and v_- to be at opposite rails at the beginning of packet com-
munication. To save the energy otherwise required to completely charge and dis-
charge the primarily capacitive medium, the DC voltages are held constant by high
impedance resistors, and transmitted signals are AC coupled onto the medium with supply-rail-coupled (SRC) differential transmitters (Fig. 27.6.3). This approach is advantageous, as capacitive-driving reduces output voltage swing and driver load [6,7], irrespective of the network DC potential. Additionally, by using dual capacitors C_1 and C_2 that are nominally discharged and charged, respectively, a ternary signaling scheme can be used, simplifying RX synchronization algorithms. To illustrate, asserting $pa(0)$ in TX^+ charges C_1, producing a negative voltage swing on the output that is proportional to the capacitive divider ratio of C_1 and C_2. Asserting $pa(2)$ would instead discharge C_2, generating a positive voltage swing. The opposite effects are arranged for TX^-, making the signaling scheme differential, yet operating at different DC levels. Both TX^+ and TX^- consist of 7 pairs of binary-weighted tri-state inverters and capacitive DACs to provide voltage swing configurability.

The RX FE samples and digitizes the SRC differential voltage across v_+ and v_- using 4 time-offset acquisition (AQ) blocks (Fig. 27.6.4). An SRC common-mode independent sampling structure is implemented, exploiting the fact that v_+ and v_- have DC potentials centered at opposite rails. Before packet reception, the sampling capacitors are purged. During the preset phase, the capacitors are charged to the supply rails; since the top plates are floating, their potentials set to mid-rail. During sampling, the bottom capacitor plates are connected to the $eTextiles$ network. As the inputs are already centered at opposite DC potentials and the top plates remain floating, only differential charge is sampled on top of the existing mid-rail charge residing on each capacitor. As a result, during the hold phase, the inputs to the comparators are differentially centered at mid-rail, requiring no additional biasing and reducing the CMRR requirements of the ensuing comparators.

Samples are converted to ternary digits (trits) by two clocked comparators sized for a 3σ offset under 250mV. Each comparator has 8 bits of differential pair and current source weighting, providing offsets that vary by $\pm60mV$. The comparators are configured to have equal and opposite non-zero offsets, such that any differential samples above or below the absolute offset level convert to trits ‘$+$’ or ‘$-$’, respectively; samples residing between the offset levels convert to ‘0’. The conversion is performed by an offset orientation-independent ternary encoder, permitting the comparator pair to swap roles. After calibration, this form of comparator configuration-redundancy improves the σ of offset errors, measured as the difference between the desired and attained offset for each comparator, by 1.5-2.5X.

Each sample and conversion operation completes in two clock cycles, requiring two interleaved AQ blocks to demodulate data at full rate. Synchronization is achieved in the RX back-end (BE) by correlating incoming data using two additional AQ blocks to ensure sampling occurs every half clock period (Fig. 27.6.5). A custom multiplier is implemented for the correlator ternary arithmetic, saving 2 bits in eachadder stage over a traditional 2’s complement topology. If a correlator output crosses a programmable threshold, synchronization is achieved, and the two unused AQ blocks are clock gated. Alternatively, the RX BE can be configured in an auto-correlation mode for a CSMA MAC.

The transceiver is fabricated in 0.18µm CMOS, occupies a core area of 0.83mm2, and operates at 0.9V. Although healthcare applications typically only require 10-100kb/s per sensor, the transceiver communicates at a raw data rate of 100Mb/s to accommodate up to 30 time-multiplexed sensor nodes on the shared medium and to provide margin for remote charging duty-cycling and coding overhead. The RX FE consumes 2pJ/bit, which is at least 20X lower than wireless and BCC systems operating at similar distances, and is comparable to wireless $eTextiles$ systems operating over much shorter distances (Fig. 27.6.6). Over 1m, the TX FE consumes 0.7-to-18pJ/bit for output voltage swings from 6-to-290mV. At 100% receive-mode duty cycle, the chip consumes 110µW, including RX, digital baseband, and I/O power. The remote battery scheme achieves 95% power transfer efficiency from BS to sensor node, compared to 54.9% for wire-
less power transfer efficiency [8]. Figure 27.6.6 shows measured transmitted and received waveforms, and summarizes the chip results. A die photo is shown in Fig. 27.6.7.

Acknowledgements:
This work was funded in part by the FCRP Focus Center for Circuit & System Solutions (C2S2), under contract 2003-CT-888.

References:
Shared eTextiles communication and power delivery medium

Basestation prototype (eTextiles transceiver & wireless relay)

Figure 27.6.1: Implemented eTextiles system with packet diagram shown.

Packet Diagram:

<table>
<thead>
<tr>
<th>Beacon Req</th>
<th>Payload</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacon</td>
<td>Node ID</td>
<td></td>
</tr>
<tr>
<td>3-16 bits</td>
<td>5</td>
<td>BS TX / Node RX</td>
</tr>
<tr>
<td>3-16 bits</td>
<td>5</td>
<td>BS RX / Node TX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No RX/TX</td>
</tr>
</tbody>
</table>

Payload Charge

eTextile nodes

Figure 27.6.2: eTextiles transceiver block diagram used for sensor nodes. The BS uses the same chip, but replaces the super capacitor with a battery.

TX+ (6:0)

Figure 27.6.3: Supply-rail-coupled (SRC) differential ternary transmitter.

RX FE

Figure 27.6.4: RX front end (FE) consisting of four time-offset acquisition (AQ) blocks.

Figure 27.6.5: RX back end (BE) used for synchronization.

Figure 27.6.6: Measured transient waveforms and table of measured results.

Figure 27.6.7: Implemented eTextiles system with packet diagram shown.
Figure 27.6.7: Die photograph of the eTextiles transceiver.