Dzyaloshinskii-Moriya interaction and spin reorientation transition in the frustrated kagome lattice antiferromagnet

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Dzyaloshinskii-Moriya interaction and spin reorientation transition in the frustrated kagome lattice antiferromagnet

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
3Department of Physics, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
4Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
5Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
6NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
7Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
8Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-141 09 Berlin, Germany
9The Dow Chemical Company, Core R&D, Midland, Michigan 48674, USA
10Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

(Received 1 February 2011; revised manuscript received 28 April 2011; published 9 June 2011)

Magnetization, specific heat, and neutron scattering measurements were performed to study a magnetic transition in jarosite, a spin-$\frac{5}{2}$ kagome lattice antiferromagnet. When a magnetic field is applied perpendicular to the kagome plane, magnetizations in the ordered state show a sudden increase at a critical field H_c, indicative of the transition from antiferromagnetic to ferromagnetic states. This sudden increase arises as the spins on alternate kagome planes rotate 180° to ferromagnetically align the canting moments along the field direction. The canting moment on a single kagome plane is a result of the Dzyaloshinskii-Moriya interaction. For $H < H_c$, the weak ferromagnetic interlayer coupling forces the spins to align in such an arrangement that the canted components on any two adjacent layers are equal and opposite, yielding a zero net magnetic moment. For $H > H_c$, the Zeeman energy overcomes the interlayer coupling causing the spins on the alternate layers to rotate, aligning the canted moments along the field direction. Neutron scattering measurements provide the first direct evidence of this 180° spin rotation at the transition.

DOI: 10.1103/PhysRevB.83.214406 PACS number(s): 75.25.—j, 75.30.Kz, 75.50.Ee, 75.40.Cx

I. INTRODUCTION

Frustrated spin systems have received considerable attention from both theorists and experimentalists due to their unconventional ground states and spin dynamics such as spin liquids, spin nematic, and spin ice. Antiferromagnetically coupled spins located on the vertices of corner-sharing triangles that make up the kagome lattice [Fig. 1(a)] are highly sought after as being one of the most highly frustrated spin systems on a two-dimensional (2D) lattice. Among other realizations of the kagome lattice antiferromagnet such as SrCr$_3$Ga$_3$O$_{19}$, volborthite, herbertsmithite, and Rb$_2$Cu$_3$SnF$_{12}$, jarosite is considered one of the most ideal systems for the following reasons. First, it consists of single and undistorted kagome planes with no structural phase transition down to the base temperature. Second, a stoichiometrically pure, single-crystal sample can be synthesized.

The general chemical formula of materials in this family is $\text{AM}_2\text{(OH)$_6$(SO$_4$)$_2$}$, where A is a monovalent or bivalent cation such as Na$^+$, K$^+$, Rb$^+$, NH$_4^+$, Ag$^+$, Tl$^+$, H$_3$O$^+$, or $\frac{1}{2}$Pb$^{2+}$, and M is a trivalent cation such as Fe$^{3+}$, Cr$^{3+}$, or V$^{3+}$. For jarosite, the magnetic $S = 5/2$ Fe$^{3+}$ ions, which lie at the center of a tilted octahedral cage formed by six oxygen atoms, reside at the corners of the triangles of the kagome lattice. The kagome planes, which are separated by nonmagnetic cations A and sulfate groups, stack up along the c direction with weak interlayer coupling, attesting to the two-dimensionality of this system.

Even though jarosite has long been regarded as a prime model for studying 2D spin frustration, until recently the inability to synthesize magnetically pure samples had clouded efforts to fully understand the precise magnetic behavior of this system. We have developed kinetic control of the sample preparation process through oxidation-reduction chemistry, which leads to full occupancy of the magnetic sites. This technique yields materials that display consistent magnetic properties. Most notably, we observe a prominent antiferromagnetic ordering temperature T_N narrowly ranging from 56 to 65 K for jarosites with different interplanar cations.

In addition, the nearest-neighbor exchange interaction is consistent for all jarosites, indicated by similar values of the Curie-Weiss temperature of ~ -800 K. This similarity in the Curie-Weiss temperature is not surprising, as the basic magnetic unit, the Fe$^{3+}$(µ-OH)$_3$ triangle, is structurally homologous in all jarosites.

Due to frustration and low dimensionality, ground states of a Heisenberg kagome lattice antiferromagnet are infinitely degenerate. Hence, no three-dimensional (3D) magnetic order is expected at any nonzero temperature. However, in jarosite, anisotropic terms and small interlayer coupling in the spin Hamiltonian are present, and the 3D magnetic long-range order (LRO) has been observed at low temperature $T < T_N$. Powder neutron diffraction measurements on KFe$_3$(OH)$_6$(SO$_4$)$_2$ show that the spins order in a coplanar $q = 0$ structure [Fig. 1(a)] below $T_N \approx 65$ K. In the $q = 0$ structure, spins on each triangle form the 120$^\circ$ arrangement within the kagome plane.
FIG. 1. (Color online) (a) The kagome lattice is drawn as corner-sharing triangles with the $q = 0$ ground-state spin structure. Plus signs inside triangles indicate the sign of the vector chirality. (b) The structure of jarosite is shown as a ball-and-stick model, highlighting the FeIII(μ-OH)$_3$ bond connectivity.

and point either toward (all-in) or away from (all-out) the center of the triangle.

The ordered spins can be decomposed into three sublattices, with the spins on each triangle labeled S_1, S_2, and S_3, as shown in Fig. 1(a). The vector chirality for each triangle can be defined as

$$K_v = \frac{2}{3\sqrt{3}}(S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1).$$ \hspace{1cm} (1)

For the coplanar arrangement, this vector is parallel to the c axis with amplitude of $+1$ or -1. A triangle has positive (negative) vector chirality if the spins rotate clockwise (counterclockwise) as one traverses around the vertices of the triangle clockwise. Figure 1(a) shows the $q = 0$ structure with positive vector chirality. Figure 2 shows the stacking of the kagome layers along the c direction, where white triangles represent the all-in arrangement and black triangles represent the all-out arrangement. The scalar chirality for each triangle can also be defined as

$$K_s = S_1 \cdot (S_2 \times S_3).$$ \hspace{1cm} (2)

The scalar chirality on a single plane is nonzero if spins cant out of the plane. We have previously reported the field-induced spin-canting transition that corresponds to a nontrivial change of the scalar chirality from the net $K_s = 0$ to $K_s \neq 0$ state.31

The 3D magnetic LRO in jarosite is a result of ferromagnetic interlayer coupling and spin anisotropy arising from the Dzyaloshinskii-Moriya (DM) interaction.31,34,35 The DM interaction, which is a perturbation on the Heisenberg spin Hamiltonian, is present if there is no inversion center between magnetic sites, and its strength is linearly proportional to the spin-orbit coupling.36–38 It has been experimentally observed in spin frustrated perovskite cuprates,39–46 the pyrochlore antiferromagnet Cu$_4$O$_3$,47 and molecule-based magnets.48–52 The microscopic calculations of the DM interaction on the kagome lattice have been carried out by Elhajal et al.36 by applying Moriya’s formulation.38 To first approximation, the spin Hamiltonian is given by

$$\mathcal{H} = \sum_{nn} [J_1 S_i \cdot S_j + D_{ij} \cdot (S_i \times S_j)]$$

\[+ \sum_{nnn} J_{nnn} S_i \cdot S_j + \sum_{n,n,l} J_{\perp} S_m \cdot S_n, \hspace{1cm} (3)\]

where Σ_{nn} and Σ_{nnn} indicate summation over pairs of in-plane nearest neighbors and next nearest neighbors, respectively, while $\sum_{n,n,l}$ denotes summation over pairs of out-of-plane nearest neighbors. J_1 and J_2 are the nearest-neighbor and next-nearest-neighbor exchange interactions, D_{ij} is the DM vector defined in a local axis, and J_{\perp} is the interlayer coupling.35 Our spin-wave measurements on a single-crystal sample provide all relevant spin Hamiltonian parameters but J_{\perp} due to the unresolved dispersion along the c direction.34,35,55 The same in-plane spin arrangement of the two triangles on the adjacent planes at zero field in the ordered state (see the left panel of Fig. 2) points to the ferromagnetic interlayer coupling ($J_{\perp} < 0$).

The DM vector lies on a mirror plane bisecting the bond connecting two magnetic sites. Figure 3 shows its orientation with respect to the tilt of the FeO$_6$ octahedra. If one octahedron tilts outward, the octahedron that lies right on top or below will tilt inward. Therefore, the direction of the out-of-plane component of the DM vector changes from out-of to into the page or vice versa when one moves up or down one layer. On the other hand, the in-plane component always points toward the center of the triangle. Unfortunately, these symmetry considerations alone do not determine a precise direction or value of the DM vector, which depends on microscopic details and can only be calculated by a microscopic theory. However, once the DM vector is calculated for one bond, all other DM vectors can be determined using symmetries of the crystal.

The DM interaction can induce a magnetically ordered state at a nonzero temperature by lifting the macroscopic ground-state degeneracy and determines the ground-state spin structure.36,54 In jarosite, the tilt of the octahedra is about 20° with respect to the crystallographic c axis,27,28 resulting in both out-of-plane D_z and in-plane D_p components of the DM

FIG. 2. Spin reorientations are shown on the second, fourth, and sixth layers (from the bottom) when $H > H_c$. White triangles indicate the all-in arrangement and dark triangles indicate the all-out arrangement. The shaded area shows the volume of the magnetic unit cell.
In this paper, we report the results of specific heat, magnetization, and neutron scattering measurements on two jarosites, KFe$_3$(OH)$_6$(SO$_4$)$_2$ (potassium jarosite) and AgFe$_3$(OH)$_6$(SO$_4$)$_2$ (silver jarosite). In Sec. II, we discuss the specific heat and magnetization measurements and elucidate the field-induced transition between states with different spin textures. In Sec. III, we investigate spin reorientation at the transition using neutron scattering. Finally, the phase diagrams of silver and potassium jarosites are discussed in Sec. IV.

II. SPECIFIC HEAT AND MAGNETIZATION MEASUREMENTS

Details of the synthesis and x-ray crystal structure refinement of silver jarosite have been previously reported in Ref. 28, whereas those of potassium jarosite have been reported in Refs. 27 and 31. The specific heat C of a deuterated polycrystalline sample of silver jarosite was measured over a 5–150 K temperature range at field strengths varying from 0 to 14 T (Fig. 4). At zero field, a cusp at T_N \approx 59 K indicates the transition to the 3D magnetic LRO. When the field is aligned along the c axis, the cusp broadens with increasing field (see the inset of Fig. 4). The entropy associated with the magnetic order, which is obtained from integrating the magnetic part of C/T [after correcting for lattice contribution which was estimated from the non-magnetic isostructural compound KGa$_3$(OH)$_6$(SO$_4$)$_2$ over the temperature range from 5 K to 150 K, represents about 70% of the $R \ln 6$ (where R is the molar gas constant) total entropy expected from the spin-5/2 system, compared with \sim 50% for potassium jarosite. This result suggests that short-range correlations have already formed at temperature higher than 150 K.

The specific heat of single-crystal potassium jarosite measured with the field of 13.7 T along the c axis shows two anomalies, one at 64 K and the other at 50 K (Fig. 5). The former coincides with the transition to the ordered state in zero field. The sharp peak is, however, replaced by a broad cusp in the presence of the magnetic field. The latter occurs at the same temperature where the sharp drop in the magnetization is observed, corresponding to the spin reorientation transition between the ferromagnetic and antiferromagnetic states. This anomaly is only observed in the single-crystal sample, but not in the polycrystalline sample due to powder average and its small contribution to the overall specific heat.

Magnetization measurements on polycrystalline samples of nondeuterated and deuterated silver jarosite were performed over a 5–300 K temperature range at field strengths varying from 0 to 14 T. All raw magnetization data were corrected for diamagnetism due to core electrons and paramagnetic contributions due to free spins or impurities. To extract the paramagnetic contributions, the low-field region of the magnetization $M(H)$ for $H < 9.5$ T at $T = 5$ K was fitted to

FIG. 4. (Color online) Specific heat of polycrystalline samples of deuterated silver jarosite (red circles) and of nonmagnetic isostructural compound KGa$_3$(OH)$_6$(SO$_4$)$_2$ (blue squares) measured at $H = 0$ T. The KGa$_3$(OH)$_6$(SO$_4$)$_2$ data are scaled to match the silver jarosite data at high temperature and used to estimate lattice contribution. The inset shows the specific heat of silver jarosite at different magnetic fields. Uncertainties where indicated in this paper are statistical in origin and represent one standard deviation.
A field was applied parallel to the c axis. (a) \(M/H\) as a function of temperature measured at \(H = 7\) T (closed squares), 13 T (open squares), and 14 T (open triangles). (b) Specific heat as a function of temperature measured at \(H = 0\) T (open circles) and 13.7 T (closed circles). The inset shows the spin-only specific heat.

\[M(H) = P_1 B_1 H / T + P_2 H + P_n,\]

where \(P_n\) are empirical prefactors and \(B_1(x)\) is the Brillouin function with \(J = 5/2\). The average value of \(P_1\) upon increasing and decreasing fields at 5 K is about 0.005 \(\mu_B\), which indicates that about 0.1% of the Fe\(^{3+}\) spins are noninteracting. This result suggests that all magnetic sites are occupied and silver jarosite has virtually no noninteracting spins in the ordered state.

The magnetic susceptibility (\(\chi = M/H\)) measurements on nondeuterated samples at low field of 100 Oe (not shown) show LRO below the Néel ordering temperature \(T_N\) of 59.6 K.\(^{28}\) At high temperature (\(T > 150\) K), \(\chi\) follows the Curie-Weiss law \(\chi = C'(T - \Theta_{CW})\). A fit to this equation yields \(\Theta_{CW} = -800(50)\) K and \(C' = 5.4(5)\) cm\(^3\) K/mol Fe. The ordering temperature \(T_N\) is greatly reduced from the mean-field value \(|\Theta_{CW}|\) due to geometric frustration, suggested by a large empirical frustration parameter,\(^{8}\) \(f = |\Theta_{CW}| / T_N \approx 13\). Therefore, the mean-field theory cannot be applied to determine the effective moment \(\mu_{eff}\) and the nearest neighbor exchange coupling \(J_1\). Harris et al.\(^{36}\) introduce the corrections to the mean-field theory to account for geometric frustration using the high-temperature series analysis for the kagome lattice, which gives \(\Theta_{CW} = 1/2 \Theta_{CW}\) and \(C' = 3/2 C\), where \(\Theta_{CW}\) and \(C\) are the mean-field Curie-Weiss temperature and constant, respectively. Using these corrections, we obtain the effective moment \(\mu_{eff} = 6.2(6)\) \(\mu_B\) and the nearest neighbor exchange coupling \(J_1 = 3.9(2)\) meV. For comparison, the values of the nearest neighbor coupling and the effective moment for potassium jarosite deduced from the Curie-Weiss fit using Harris’s corrections are \(J_1 = 3.9(2)\) meV and \(\mu_{eff} = 6.3(2)\) \(\mu_B\).\(^{31}\) We note the similarity of the values of \(J_1\) and \(\mu_{eff}\) for potassium jarosite and silver jarosite due to the structural homology of the fundamental interacting unit, the Fe\(^{3+}(\mu-OH)\)\(_3\) triangle. Goodenough-Kanamori rules governing the frontier orbitals of the hydroxide-bridged iron trimer predict this antiferromagnetic exchange.\(^{57,58}\) The singly occupied \(d_{z^2-r^2}\) orbitals of high-spin Fe\(^{3+}\) overlap with the filled \(sp^3\) hybrid orbitals of the hydroxide, giving a superexchange pathway of \(\sigma\) symmetry.

The magnetic susceptibility of deuterated silver jarosite after subtracting the paramagnetic part is shown in Fig. 6(a). All measurements were performed on warming at fields between 3 T and 14 T. At high fields, the peak at \(T \approx 60\) K becomes a broad plateau. The plateau is getting broader as the field increases and extends to the base temperature of 5 K for \(H > 10.5\) T. The zero-field-cool and field-cool data show the same temperature dependence except at low temperature where the field-cool data show a rise in the susceptibility, which we believe is due to trapped ferromagnetic domains of the polycrystalline sample. The susceptibility of the nondeuterated sample (not shown) shows the the same temperature and field dependence but the saturated value at high fields (\(\chi_{max} \approx 9 \times 10^{-3}\) cm\(^3\)/mol Fe) is about 10% smaller than that of the deuterated sample. We observe a sharp drop in the susceptibility at the low-temperature edge of the plateau [Fig. 6(a)] and define \(T_c\) as a maximum of

\[\chi = \chi_{max} \approx 9 \times 10^{-3}\] cm\(^3\)/mol Fe) is about 10% smaller than that of the deuterated sample. We observe a sharp drop in the susceptibility at the low-temperature edge of the plateau [Fig. 6(a)] and define \(T_c\) as a maximum of
\[(d \chi /dT)_{H, T_c} \text{, which decreases as the applied field increases} \]

[Fig. 6(b)], indicates the transition between the ferromagnetic and antiferromagnetic states. For \(T < T_c(H) \), the system is in the magnetically ordered state with no net ferromagnetic moment. In this state, the net scalar chirality is zero.\(^{31}\) For \(T_c(H) < T < T_N \), the system is also in the magnetically ordered state but the net scalar chirality is now nonzero and the net ferromagnetic moment is present. From the magnetization and specific heat measurements, it is difficult to precisely define the ordering temperature \(T_N \) at high fields due to the lack of well-defined peaks. However, \(T_N \) can be readily measured by neutron scattering, which will be discussed in Sec. III.

A. Critical field \(H_c \) and canted moment \(\Delta M \)

High-field magnetization measurements on polycrystalline samples of silver jarosite were performed up to a maximal field of 14 T; similar measurements on a single-crystal sample of potassium jarosite were previously reported in Ref. 31. Figure 7(a) shows the magnetization \(M \) at \(T = 5 \) K as a function of field after subtracting the paramagnetic part. \(M \) increases linearly with increasing applied field up to 9.75 T, which is followed by a sharp increase between 9.75 and 11.5 T. The linear response is then recovered for \(H > 11.5 \) T. Continuing the measurement with decreasing applied field, we observe that \(M \) decreases linearly to 10.5 T and then drops sharply between 8.75 and 10.5 T. The linear behavior then resumes for \(H < 8.75 \) T. The hysteresis in the bulk magnetization signifies ferromagnetic ordering and is indicative of a first-order transition between the antiferromagnetic and ferromagnetic states. The anisotropic crystal field of \(Fe^{3+} \) ions in a distorted octahedral geometry yields the hysteresis in the \(-H \) curve with a coercive field of approximately 2 T at \(T = 5 \) K. The critical field \(H_c \), at which the sudden change in magnetization is observed, is defined as a maximum of \((dM/dH)_{T}\). Upon increasing (decreasing) field, \(H_c = 10.75 \) T (8.75 T) at \(T = 5 \) K. The same measurements were conducted at different temperatures to obtain \(H_c(T) \). The results are shown in Fig. 7(b). The line corresponds to a fit to the power law \(H_c(T) \propto |T - T_N|^\beta \) for a temperature range between 35 K and 65 K giving exponent \(\beta = 0.20(1) \) and \(T_N = 58.8(3) \) K compared with \(\beta = 0.25 \) and \(T_N = 64.7 \) K for potassium jarosite.\(^{31}\)

Additional high-field magnetization measurements on a single-crystal sample of potassium jarosite were performed using a nondestructive pulsed magnet, which can generate pulsed magnetic fields up to 55 T, at the International Mega-Gauss Science Laboratory, Institute for Solid State Physics, University of Tokyo. These pulsed-field measurements are essential to determine the canted moment and critical field in potassium jarosite at low temperature, since the critical field below 50 K exceeds 14 T, the maximal field of our previous measurements.\(^{31}\) Magnetizations were measured by induction using a coaxial pickup coil. A single-crystal sample of potassium jarosite was aligned so that the magnetic field was applied perpendicular to the kagome plane. The sample was cooled in a liquid \(^3\)He cryostat down to 4.2 K. Raw data were normalized to magnetizations reported in Ref. 31.

We also observed the hysteretic behavior, indicative of the first-order transition, in potassium jarosite at low temperature as shown in the inset of Fig. 8. The coercive field in potassium jarosite is, however, much smaller than that in silver jarosite. The hysteresis becomes smaller as temperature increases, and is undetectable above 50 K. Nevertheless, we cannot rule out the possibility that the hysteresis exists up to \(T_N \). In addition to the transition at \(H_c \), the magnetization curves show an additional kink at \(H_c > H_c \) denoted by black arrows in Figs. 8(a) and 8(b). As temperature decreases, \(H_c \) and \(H_c \) converge and the high-slope region between \(H_c \) and \(H_c \) disappears at the base temperature. This kink was not clearly observable in the polycrystalline sample of silver jarosite. It is possible that the prominent first-order transition in silver jarosite suppresses this intermediate phase. A similar kink in the \(-H \) curve was also observed in ferromagnetic perovskites, which show a change from first- to second-order magnetic phase transitions as a function of doping.\(^{29}\)

To extract a canted moment \(\Delta M \) from the data, we fit the high-field data \((H > H_c)\) of the \(-H \) curve to a linear function with a fixed slope and extrapolated that line to intercept the y axis to obtain \(\Delta M \) [Fig. 9(a)]. The slope was obtained from fitting low-field data \((H < H_c)\) to a linear function, fixing a constant term to zero. The hysteresis in \(\Delta M \) persists up to
show a clear peak, which is used to define H_c. The data in (a) and (b) are offset for clarity.

$$\frac{dM}{dH}$$

denote decreasing and increasing field sweeps, respectively. (b) dM/dH curves show a clear peak, which is used to define H_c. The data in (a) and (b) are offset for clarity.

$T \approx 50$ K, which is in agreement with the hysteresis observed in the critical field [Fig. 7(b)]. Below $T \approx 50$ K, the canted moments measured on increasing field are slightly larger than those measured on decreasing field. Figure 9(b) also shows the difference of ΔM between deuterated and nondeuterated samples. This difference could be due to a difference in the in-plane component of the DM interaction D_p arising from the replacement of hydrogen by deuterium.

The presence of the canted moment allows us to investigate the DM interaction and the interlayer coupling directly. The sudden change in magnetization is a result of the difference in the magnetic moment along the c axis caused by 180° rotation of spins on the alternate layers that were previously oppositely canted due to the ferromagnetic interlayer coupling as shown in the diagram in Fig. 7(b). At the critical field, the magnetic field energy overcomes the ferromagnetic interlayer coupling and forces the spins on the alternate layers to rotate 180° causing the canted moments to align.

B. Canting angle η, DM parameters D_p and D_z, and interlayer coupling J_\perp

The canting angle, DM parameters, and interlayer coupling can be calculated from the magnetization results (H_c and ΔM). ΔM goes to zero as temperature approaches T_N and saturates for temperature below 30 K. The dashed lines in Fig. 9(b) show that ΔM saturates at $T_N(0) = 300(30)$ emu/mol Fe = 0.0545 μ_B for nondeuterated [deuterated] silver jarosite. However, since the data were measured on polycrystalline samples, ΔM is multiplied by three to take into account the powder average. Given the expected moment $M = 5 \mu_B$ for $S = 5/2$, the canting angle at zero temperature η is defined as $\eta = \sin^{-1}(\frac{\Delta M(0)}{M})$, which gives $\eta = 1.8(2)^\circ$ for nondeuterated [deuterated] sample. For potassium jarosite, $\Delta M(0) = 650(80)$ emu/mol Fe (single-crystal data) and hence $\eta = 1.3(2)^\circ$, which is lower than the value of 1.9(2)$^\circ$ obtained from the spin-wave measurements. This difference could be due to thermal or quantum fluctuations, which reduce the staggered moment. The similar measurements of the spin canting in La_2CuO_4, a parent compound of high-T_c superconductors, yields a much smaller value of the canting angle ($\eta = 0.17)^\circ$.

Since the spin canting is a result of the DM interaction, one can write down the expression for η in terms of the DM parameters. Elhajal et al. derived the following relation between η and the DM parameters D_p and D_z:

$$\eta = \frac{1}{2} \tan^{-1} \left[\frac{-2D_p}{\sqrt{3}J_\perp - D_z} \right]. \quad (4)$$

We note that signs of D_p and D_z are reversed and different from Ref. 36 to be consistent with the DM vector defined in this paper and in Ref. 35. The absolute value indicates that the sign of the canting angle with respect to the in-plane order cannot be uniquely determined from the DM vector alone. In fact, for a given value of D_p with $D_z < 0$, there exist two lowest-energy degenerate states with opposite canting and different in-plane orders corresponding to the $K_x > 0$ and $K_x < 0$ states. At zero field, this chiral symmetry is spontaneously broken at T_N and the interlayer coupling selects the spin structure on neighboring planes, giving rise to the 3D magnetic LRO. Equivalently, applying a magnetic field along the c axis will also lift this degeneracy.
Yildirim and Harris have also derived a similar expression for the canting angle induced by the DM interaction:

$$\eta = \frac{1}{2} \sin^{-1}\left[\frac{-2D_p}{\sqrt{3}J - D_z}\right], \quad (5)$$

where $J = J_1 + J_2$. Both Eq. (4) and Eq. (5) approach the same limiting value for a small canting angle. In order to determine both in-plane D_p and out-of-plane D_z components of the DM interaction, we also need the value of the energy gap of the lifted zero energy mode and therefore rely on previous single-crystal neutron scattering measurements on potassium jarosite.34 The spin-wave calculations by Yildirim and Harris give the following expression for the two energy gaps around 7 meV at the Γ point:

$$\hbar\omega_0 = S \left(\sqrt{3D_p^2 + 18D_z^2} - 6\sqrt{3}JD_z \pm \frac{2D_zD_p}{|J|} \right). \quad (6)$$

The energy splitting of these two gaps is about 0.1 meV, where the energy of the lifted zero energy mode has a smaller value. This value is independent of the sign of D_p due to the \pm sign in front of the last term. $|D_p|$ and D_z can be calculated by solving Eqs. (5) and (6) providing η and $\hbar\omega_0$. Given $\hbar\omega_0 = 6.7(1)$ meV from the single-crystal neutron scattering measurements35 and using the data shown in Fig. 10, we estimate the energy gap for silver jarosite to be 6.2(4) meV.

We obtain $|D_p| = 0.18(3)$ meV [0.24(3) meV], and $D_z = -0.17(3)$ meV [−0.17(3) meV] for nondeuterated (deuterated) silver jarosite (see Table I). Here, we assume that J is the same for silver jarosite and potassium jarosite as evidenced by the same Curie-Weiss temperature.

In addition, the knowledge of $\Delta M(0)$ and $H_c(0)$ from the magnetization measurements allows us to calculate the interlayer coupling J_\perp. Similar to ΔM, H_c appears to saturate at low temperature to the average value of $H_c(0) = 9.5(1.0)$ T. As temperature increases, H_c monotonically decreases and goes to zero as temperature approaches T_N. The field-induced transition is a result of the competition between the ferromagnetic interlayer coupling and the Zeeman energy. Using the equation $J_\perp = -\Delta M(0)/H_c(0)/S^2$,31,60 we obtain $J_\perp = -0.014(3)$ meV $[-0.018(4)$ meV] for the nondeuterated [deuterated] silver jarosite. The minus sign indicates that the interlayer coupling is ferromagnetic. For potassium jarosite, using the canting angle of 1.9(2)° that gives $\Delta M(0) = 0.17(2)$ μ_B from the spin-wave measurements or $\Delta M(0) = 0.12(2)$ μ_B from the pulsed-field magnetization measurements, we obtain $J_\perp = -0.027(4)$ meV or $-0.019(4)$ meV, respectively (see Table I). The magnitude of J_\perp is hundreds times smaller than the magnitude of J, which attests to the two-dimensional character of this spin system.

III. NEUTRON SCATTERING MEASUREMENTS

Inelastic neutron scattering measurements in zero field were performed using the thermal triple-axis spectrometers BT7 and BT9 at the NIST Center for Neutron Research (NCNR) with the final energy fixed at 14.7 meV, to measure spin-wave excitations on deuterated polycrystalline silver and potassium jarosites, respectively. The horizontal collimations of open-30°-sample-60°-120° and 40°-56°-sample-52°-open were employed at BT7 and BT9, respectively. Pyrolytic graphite (PG) crystals were utilized to monochromate and analyze the incident and scattered neutron beams. PG filters were placed in the scattered beam to reduce higher order contamination. The samples were cooled using a closed cycle 3He cryostat to $T = 5.3$ K at BT7 and to $T = 14$ K at BT9. The energy scans in Fig. 10 at $|Q| = 1.7$ Å for silver jarosite (red squares) and $|Q| = 1.5$ Å for potassium jarosite (blue circles) show powder-average spin-wave excitations of the lifted zero-energy mode,34 which is weakly dispersive, at energy transfer of 7.9(4) meV and 8.5(3) meV, respectively.

| Compound | $H_c(0)$ (T) | $\Delta M(0)$ (μ_B) | η (°) | $|D_p|$ (meV) | D_z (meV) | J_\perp (meV) | $\hbar\omega_0$ (meV) |
|-------------------|--------------|-------------------------|-------------|--------------|-------------|----------------|------------------------|
| AgFe$_2$(O$_x$)(SO$_4$)$_2$ | | | | | | | |
| I. $X = H$ | 9.5(1.0) | 0.16(2) | 1.8(2) | 0.18(3) | −0.17(3) | −0.014(3) | 6.2(4) |
| II. $X = D$ | 9.5(1.0) | 0.21(2) | 2.4(2) | 0.24(3) | −0.17(3) | −0.018(4) | 6.2(4) |
| KFe$_2$(OH)$_6$(SO$_4$)$_2$ | | | | | | | |
| I. Neutron scattering 3 | 1.9(2) | 0.197(2) | −0.196(4) | −0.027(4) | 6.7(1) | | |
| II. Magnetization | 16.8(5) | 0.12(2) | 1.3(2) | −0.019(4) | | | |

214406-7
To further study the magnetic transition at H_c, elastic neutron scattering measurements on a polycrystalline sample in a high magnetic field were performed using the triple-axis spectrometer E1, the diffractometer E4 at the Berlin Neutron Scattering Center (BENSC), Helmholtz Centre Berlin for Materials and Energy, with the incident neutron wavelength of 2.43 Å ($\hbar\omega = 13.9$ meV), and the triple-axis spectrometer BT7 at NCNR with the incident neutron energy of 14.7 meV. The horizontal collimations of 40°-80°-sample-40°-40°-open-sample-open were employed at E1 and E4, respectively, and the horizontal collimations of open-50°-S-60°-120° were employed at BT7. PG crystals were utilized to monochromate the incident neutron beam at E1, E4, and BT7, and to analyze the scattered neutron beam at E1 and BT7. PG filters were placed in the incident beam at E1 and E4, and two PG filters were placed before and after the sample at BT7 to reduce higher order contamination. At BENSC, deuterated polycrystalline silver jarosite of mass 5.5 g was mounted inside the VM-1 magnet with the highest field of 14.5 T, and at NCNR 5.4 g of the polycrystalline sample was mounted inside the 11 T magnet. The sample was then cooled using a 4He cryostat.

At zero field, the canting moments on successive kagome planes are equal and opposite. It takes six layers to form a magnetic unit cell instead of three layers for a structural unit cell (Fig. 2). This causes the doubling of a magnetic unit cell along the c axis, resulting in magnetic Bragg peaks at a half-integer value along the 00' direction. For $H > H_c$, the spins on alternate layers rotate 180° changing the spin arrangement from all-in to all-out and vice versa. Figure 2 shows such spin reorientations on the second, fourth, and sixth kagome planes. In this state, the magnetic unit cell contains only three kagome planes and is the same size as the structural unit cell, resulting in the magnetic Bragg peaks at a half-integer value along the 00' direction. On the other hand, if the transition to the ferromagnetic state is caused by simply flipping the canted components on the alternate layers, the positions of the magnetic Bragg peaks will remain at the half-integer value.

In Fig. 11, $|Q|$ scans at $T = 3$ K measured on a deuterated polycrystalline sample of silver jarosite at E1 reveal the shift of the magnetic Bragg peaks expected from the 180° spin rotation. To overcome the interlayer coupling and induce the 180° spin rotation, an applied field greater than the critical field is required along the crystallographic c axis. At zero field, we observe two magnetic Bragg peaks at (0, 1, 7/2) and (1, 1, 3/2) in this $|Q|$ range. At $H = 14$ T ($H > H_c$), the peak at (1, 1, 3/2) disappears, while a new magnetic peak at (1, 1, 0) emerges. The intensity at (0, 1, 7/2) does not change because the magnitude of the magnetic field component along the c axis is less than the critical field. Since the applied field is perpendicular to the scattering plane, at (1, 1, 0) the c axis is along the vertical direction, hence along the direction of the applied field. On the other hand, at (1, 1, 3/2) and (0, 1, 7/2) the angles between the field direction and the c axis are 18° and 53°, respectively. Therefore, the field component along the c axis is reduced by about 5% at (1, 1, 3/2) and about 40% at (0, 1, 7/2). With the applied field of 14 T, the field strengths along the c axis at (1, 1, 3/2) and (0, 1, 7/2) are 13.3 T and 8.4 T, respectively, while the critical field at $T = 3$ K is 10.5 T.

Thus, we observe a decrease in intensity at (1, 1, 3/2), but no change in intensity at (0, 1, 7/2) [Fig. 11(a)]. The critical field was measured using the data taken at (1, 1, 0) where the applied field is perfectly along the c axis, and the change in the intensity is largest. The field dependence of the intensity at (1, 1, 0) [Fig. 11(b)] illustrates the hysteresis consistent with the magnetization data. Furthermore, the critical fields obtained from the neutron scattering measurements are in good agreement with the magnetization results as shown in Fig. 7(b).

To investigate this magnetic transition on a single-crystal sample, the elastic neutron scattering measurements on single-crystal potassium jarosite were performed using the triple-axis spectrometers E1 at BENSC and BT7 at NCNR with the same instrumental setup as described above. Additional neutron diffraction was performed at the diffractometer E4 at BENSC with the incident neutron wavelength of 2.45 Å using a position sensitive detector. At BENSC, the single-crystal sample (mass ≈ 20 mg) was mounted inside the VM-1 magnet, and at NCNR the same sample was mounted inside the 11 T magnet. The sample was cooled using a 4He cryostat. It was aligned in the $(hk0)$ plane with the magnetic field applied perpendicular to the scattering plane. The intensity of the (1, 1, 0) reflection was measured as a function of field and temperature. At NCNR, we measured the intensities of both (1, 1, 0) and (1, 1, 3/2)
FIG. 12. (Color online) (a) \(\omega\) scans around (1, 1, 0) at three different magnetic fields at \(T = 54\) K measured at E1 on single-crystal potassium jarosite. The magnetic field was applied along the c axis, which is normal to the scattering plane. (b) The integrated intensity as a function of field measured at \(T = 54\) K shows a change in intensity at the critical field. The inset shows the derivative of the integrated intensity as a function of field.

Figure 12(a) shows \(\omega\) scans measured on a single-crystal sample at E1 around the (1, 1, 0) reflection at three different fields at \(T = 54\) K. The data are fitted to a Gaussian. Figure 12(b) shows integrated intensity, which is extracted from the fit in Fig. 12(a), as a function of field at \(T = 54\) K. The inset shows the derivative of the intensity, where the critical field is defined at the maximum. The same measurements were performed at several temperatures to obtain \(H_c(T)\). The critical field obtained in these measurements is consistent with the magnetization measurements. Figures 13(a) and 13(b) show neutron scattering intensities as a function of temperature and field measured at NCNR. The magnetic scattering intensity at (1, 1, 0) [Fig. 13(a)] is nonzero in the ferromagnetic state, and goes to zero above \(T_N\) or \(T_c\). The arrows in Figs. 13(a) and 13(b) indicate \(T_c\) and \(T_N\) from the (1, 1, 0) data and the (1, 1, 3/2) data. \(T_c(H)\) obtained from the (1, 1, 0) data and that obtained from the (1, 1, 3/2) data are in good agreement with the magnetization results. In addition, the field dependence of the (1, 1, 0) magnetic Bragg intensity.

FIG. 13. (Color online) Neutron scattering intensities as a function of temperature were measured on a single-crystal sample of potassium jarosite (a) at \(Q = (1, 1, 0)\) and \(H = 11\) T and (b) at \(Q = (1, 1, 3/2)\) and \(H = 6.7\) T. A dotted arrow denotes a crossover phase line between the 3D ordered state with \(K_s \neq 0\) and the 2D short-range correlated, disordered state. Dotted lines are guides to the eye. (c) The field dependence of the (1, 1, 0) magnetic Bragg intensity.

For silver jarosite, the results of magnetization and neutron scattering measurements are summarized in the \(H-T\) phase diagram shown in Fig. 15. In the \(K_s = 0\) phase, the canted moments on adjacent kagome planes point in the opposite
FIG. 14. (Color online) Potassium jarosite phase diagram as a function of field and temperature. Open circles show the results of the neutron scattering measurements previously reported in Ref. 31. The critical fields obtained from the pulsed magnet at ISSP are denoted by closed and open diamonds for increasing and decreasing field sweeps, respectively. Blue circles denote fields at which a kink in magnetization was observed as shown by black arrows in Fig. 8. A contour plot shows the intensity of the (1, 1, 0) magnetic Bragg peak measured at E4. A solid line is a power-law fit with exponent $\beta = 0.25$. Dotted lines, which serve as guides to the eye, denote the phase lines.

FIG. 15. (Color online) Silver jarosite phase diagram as a function of field and temperature. Red circles, denoting the first-order phase transition, show the average values of the critical fields from the magnetization measurements. Blue triangles, denoting the second-order phase transition, show the results of the magnetization measurements. Open circles show the NCNR neutron scattering results. A solid line is a power-law fit with exponent $\beta = 0.20$. A dotted line shows an expected phase boundary between the net $K_y \neq 0$ state and disordered state. A green arrow indicates the possibility of a multicritical point.

measurements, this transition shifts the magnetic Bragg peaks.

At low temperature, both magnetization and neutron scattering intensity show the hysteretic behavior as a function of field. The hysteresis, which is indicative of the first-order transition, exists for $T \lesssim 50$ K. The magnetic transition line changes to second order for $T \gtrsim 50$ K, raising a possibility of the multicritical point at $T \approx 50$ K. The hysteresis was also observed in potassium jarosite with a much smaller coercive field, which becomes too small to detect above 50 K. However, we note that we cannot rule out the possibility that this first-order transition phase line could extend up to T_N.

The phase diagram of potassium jarosite is illustrated in Fig. 14. The neutron scattering measurements show the field dependence of the 3D magnetic ordering temperature T_N. At zero field, the 3D magnetic LRO is a result of the combined effect of the DM interaction and interlayer coupling. The DM interaction induces the 2D long length-scale correlations in the planes, and the interlayer coupling propagates spin correlations in the third direction. In the presence of a magnetic field, since the field favors the net $K_y \neq 0$ state while the interlayer coupling favors the net $K_y = 0$ state, they compete with each other. In the low-field region, this competition leads to a decrease of T_N. In the high-field region, on the other hand, the Zeeman energy overwhelms the interlayer coupling and takes over its role, resulting in an increase of T_N as the field increases. In Fig. 14, the contour plot of the $(1, 1, 0)$ magnetic Bragg intensity measured at E4 shows a sharp transition at (T_c, H_c), which corresponds to the spin reorientation transition, and an indistinct phase line between the 3D ordered state with $K_y \neq 0$ and the 2D short-range correlated, disordered state. At $H \approx 5$ T, the two phase lines probably meet, which is a special point where the effects of the interlayer coupling and magnetic field balance against each other, and the 3D magnetic LRO is solely induced by the 2D correlations in the planes. The lack of a well-defined peak in the specific heat at a finite field suggests that the phase boundary between the 3D $K \neq 0$ ordered state and the 2D correlated, disordered state is a crossover rather than a true phase transition. The magnetic field applied along the c axis breaks the scalar chirality symmetry, prohibiting further spontaneous breaking of the spin symmetry. This scalar chirality symmetry corresponds to the two oppositely canting degenerate states. The spontaneous breaking of this Z_2 symmetry, which corresponds to the phase transition from the 2D short-range correlation state and the 3D long-range magnetic ordered state, can only occur at zero field.

V. CONCLUSIONS

We have investigated the spin canting due to the DM interaction in jarosite using specific heat, magnetization, and neutron scattering measurements. From the observed critical field and canted moment obtained from our magnetization measurements, we were able to calculate the cantiing angle η, the DM parameters $|D_z|$ and D_z, and the interlayer coupling constant J_z. The in-plane component of the DM interaction forces the spins on a triangle to cant out of the kagome planes to form the umbrella structure of ferromagnetically aligned moments within the layers. However, at zero field, the
weak ferromagnetic interlayer coupling prompts the spins on neighboring planes to align in such an arrangement that the canted moments are equal and opposite. At the critical field, the Zeeman energy overcomes the interlayer coupling causing the spins on the alternate layers to rotate 180°. This 180° spin rotation reverses the canted moments on the alternate layers causing the sudden increase in the magnetization. This field-induced spin reorientation transition corresponds to the nontrivial change in the spin texture. In particular, the transition yields a net, nonzero value for the scalar chirality. Our elastic neutron scattering measurements in a high magnetic field provide the first direct evidence of the 180° spin rotation at the transition.

ACKNOWLEDGMENTS

The authors would like to thank P. Ghaemi and T. Senthil for many fruitful discussions. This work was supported by the NSF under Grant No. DMR 0239377, and in part by the MRSEC program under Grant No. DMR 02-13282.

T. Moriya, Phys. Rev. 120, 91 (1960).

