Observation of a New \[\text{subscript } b\] State in Radiative Transitions to \(1\mathrm{S}\) and \(2\mathrm{S}\) at ATLAS

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>G. Aad et al. (ATLAS Collaboration). "Observation of a New (b) State in Radiative Transitions to (1\mathrm{S}) and (2\mathrm{S}) at ATLAS" Physical Review Letters 108, 152001 (2012). © 2012 CERN, for the ATLAS Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.108.152001</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Dec 18 07:08:33 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/71579</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Observation of a New χ_b State in Radiative Transitions to Y(1S) and Y(2S) at ATLAS

G. Aad et al.*

(Received 21 December 2011; revised manuscript received 18 February 2012; published 9 April 2012)

The $\chi_b(nP)$ quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at $\sqrt{s} = 7$ TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb$^{-1}$, these states are reconstructed through their radiative decays to $\gamma Y(1S, 2S)$ with $Y = \mu^+\mu^-$. In addition to the mass peaks corresponding to the decay modes $\chi_b(1P, 2P) \rightarrow \gamma Y(1S\gamma)$, a new structure centered at a mass of 10.530 ± 0.005 GeV is observed, in both the $Y(1S)\gamma$ and $Y(2S)\gamma$ decay modes. This structure is interpreted as the $\chi_b(3P)$ system.

DOI: 10.1103/PhysRevLett.108.152001

PACS numbers: 14.40.Pq, 12.38.-t, 13.20.Gd, 14.65.Fy

Measurements of the properties of heavy quark-antiquark bound states, or quarkonia, provide a unique insight into the nature of quantum chromodynamics close to the strong decay threshold. For the $b\bar{b}$ system, the quarkonium states with parallel quark spins ($s = 1$) include the S-wave Y and the P-wave χ_b states, where the latter each comprise a closely spaced triplet of $J = 0, 1, 2$ spin states: χ_{b0}, χ_{b1}, and χ_{b2}. The $\chi_b(1P)$ and $\chi_b(2P)$, with spin-weighted mass barycenters of 9.90 and 10.26 GeV, respectively, can be readily produced in the radiative decays of $Y(2S)$ and $Y(3S)$ and have been studied experimentally [1].

In this Letter, χ_b quarkonium states are reconstructed with the ATLAS detector through the radiative decay modes $\chi_b(nP) \rightarrow Y(1S)\gamma$ and $\chi_b(nP) \rightarrow Y(2S)\gamma$, in which $Y(1S, 2S) \rightarrow \mu^+\mu^-$ and the photon is reconstructed either through conversion to e^+e^- or by direct calorimetric measurement. Previous experiments have measured the $\chi_b(1P)$ and $\chi_b(2P)$ through these decay modes [2]. The $\chi_b(3P)$ state has not previously been observed. It is predicted to have an average mass of approximately 10.52 GeV, with hyperfine mass splitting between the triplet states of 10–20 MeV [3,4].

The ATLAS detector [5] is a general-purpose particle physics detector with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by high-granularity liquid-argon sampling electromagnetic calorimeters. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end cap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of a system of precision tracking chambers and detectors for triggering, inside a toroidal magnetic field.

The data sample used for this measurement was recorded by the ATLAS experiment during the 2011 LHC proton-proton collision run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, which includes only data-taking periods where all relevant detector subsystems were operational, is 4.4 fb$^{-1}$. A set of muon triggers designed to select events containing muon pairs or single high transverse momentum muons was used to collect the data sample.

In this analysis, each muon candidate must satisfy standard muon quality requirements [6]. It must have a track, reconstructed in the muon spectrometer, combined with a track reconstructed in the ID with transverse momentum $p_T > 4$ GeV and pseudorapidity $|\eta| < 2.3$. The dimuon selection requires a pair of oppositely charged muons, which are fitted to a common vertex. A very loose vertex quality requirement [$|x^2|$ per degree of freedom (d.o.f.) < 20] is used and no mass or momentum constraints are applied to the fit. The dimuon candidate is also required to have $p_T > 12$ GeV and rapidity $|y| < 2.0$. The invariant mass distribution, $m_{\mu\mu}$, of dimuon candidates is shown in Fig. 1. Those candidates with masses in the ranges $9.25 < m_{\mu\mu} < 9.65$ GeV and $9.80 < m_{\mu\mu} < 10.10$ GeV are selected as $Y(1S) \rightarrow \mu^+\mu^-$ and $Y(2S) \rightarrow \mu^+\mu^-$ candidates, respectively. The asymmetric mass window (evident from Fig. 1) for $Y(2S)$ candidates is chosen in order to reduce contamination from the $Y(3S)$ peak and continuum background contributions.

The reconstruction of photons in ATLAS is described in Ref. [7]. Further details related to this particular analysis are described below.

Converted photons are reconstructed from two oppositely charged ID tracks intersecting at a conversion vertex, with the opening angle between the two tracks at this vertex constrained to be zero. For tracks with signals in
the transition radiation tracker, the transition radiation should be consistent with an electron hypothesis. In order to be reliably reconstructed, each conversion electron track must have a minimum transverse momentum of 500 MeV. It is also required to have at least four silicon detector hits and not to be associated to either of the two muon candidates. To reduce background contamination, the conversion candidate vertex is required to be at least 40 mm from the beam axis and have a vertex \(\chi^2 \) probability of greater than 0.01. The converted photon impact parameter with respect to the dimuon vertex is required to be less than 2 mm.

Electromagnetic calorimeter energy deposits not matched to any track are classified as unconverted photons. This analysis uses the “loose” photon selection described in Ref. [7], with a minimum photon transverse energy of 2.5 GeV. The loose photon selection includes a limit on the fraction of the energy deposit in the hadronic calorimeter as well as a requirement that the transverse width of the shower be consistent with the narrow shape expected for an electromagnetic shower.

To check that an unconverted photon originates from the same vertex as the \(Y \), and to improve the mass resolution of the reconstructed \(\chi_b \), the polar angle of the photon is corrected using the procedure described in Ref. [8]. The corrected polar angle is determined using the measurement of the photon direction from the longitudinal segmentation of the calorimeter and the constraint from the dimuon vertex position. Photons incompatible with having originated from the dimuon vertex are rejected by means of a loose cut on the \(\chi^2 \) per d.o.f. <200.

The converted (unconverted) photon candidates are required to be within |\(\eta \)| < 2.30 (2.37). Unconverted photons must also be outside the transition region between the barrel and the end cap calorimeters, 1.37 < |\(\eta \)| < 1.52.

The \(\chi_b \) candidates are formed by associating a reconstructed \(Y \rightarrow \mu^+ \mu^- \) candidate with a reconstructed photon. The invariant mass difference \(\Delta m = m(\mu^+ \mu^-) - m(\mu^+ \mu^-) \) is calculated to minimize the effect of \(Y \rightarrow \mu^+ \mu^- \) mass resolution. In order to compare the \(\Delta m \) distributions of both \(\chi_b(nP) \rightarrow Y(1S)\gamma \) and \(\chi_b(nP) \rightarrow Y(2S)\gamma \) decays, the variable \(\tilde{m}_k = \Delta m + m_Y(kS) \) is defined, where \(m_Y(kS) \) are the world average masses [9] of the \(Y(kS) \) states. Requirements of \(p_T(\mu^+ \mu^-) > 20 \text{ GeV} \) and \(p_T(\mu^+ \mu^-) > 12 \text{ GeV} \) are applied to \(Y \) candidates with unconverted and converted photon candidates, respectively. These thresholds are

![Figure 1](image1.png)

FIG. 1 (color online). The invariant mass of selected dimuon candidates. The shaded regions A and B show the selections for \(Y(1S) \) and \(Y(2S) \) candidates, respectively.

![Figure 2](image2.png)

FIG. 2 (color online). (a) The mass distribution of \(\chi_b \rightarrow Y(1S)\gamma \) candidates for unconverted photons reconstructed from energy deposits in the electromagnetic calorimeter (\(\chi^2_\text{d.o.f.} = 0.85 \)). (b) The mass distributions of \(\chi_b \rightarrow Y(kS)\gamma \) (\(k = 1, 2 \)) candidates formed using photons which have converted and been reconstructed in the ID (\(\chi^2_\text{d.o.f.} = 1.3 \)). Data are shown before the correction for the energy loss from the photon conversion electrons due to bremsstrahlung and other processes. The data for decays of \(\chi_b \rightarrow Y(1S)\gamma \) and \(\chi_b \rightarrow Y(2S)\gamma \) are plotted using circles and triangles, respectively. Solid lines represent the total fit result for each mass window. The dashed lines represent the background components only.
chosen in order to optimize signal significance in the \(\chi_b(1P, 2P)\) peaks.

Figure 2(a) shows the \(\vec{m}_1\) distribution for unconverted photons and Fig. 2(b) shows the \(\vec{m}_1\) and \(\vec{m}_2\) distributions for converted photons. In addition to the expected peaks for \(\chi_b(1P, 2P) \to Y(1S, 2S)\), structures are observed at an invariant mass of approximately 10.5 GeV. These additional structures are interpreted as the radiative decays of the previously unobserved \(\chi_b(3P)\) states, \(\chi_b(3P) \to Y(1S)\gamma\) and \(\chi_b(3P) \to Y(2S)\gamma\).

Separate fits are performed to the \(\vec{m}_k\) distributions of the selected \(\mu^+\mu^-\gamma\) candidates reconstructed from converted and unconverted photons to extract mass information from the observed \(\chi_b(3P)\) signals. The higher threshold for unconverted photons (2.5 GeV, versus 1 GeV for converted photons) prevents the reconstruction of the soft photons from \(\chi_b(2P, 3P)\) decays into \(Y(2S)\).

An unbinned extended maximum likelihood fit is performed to the \(\vec{m}_1 = \Delta m + m_{Y(1S)}\) distribution of the selected unconverted \(\mu^+\mu^-\gamma\) candidates. The three peaks in the distribution are each modeled by a Gaussian probability density function (PDF) with an independent normalization parameter \(N_n\), mean value \(\vec{m}_n\), and width parameter \(\sigma_n\). The background distribution is parametrized by the PDF \(N_B\exp(\Delta m + B\Delta m^2)\) where \(N_B, A,\) and \(B\) are all free parameters. The three mean values \(\vec{m}_{n=1,2,3}\) determined by the fit are shown in Table I. The mean value \(\vec{m}_3\) is an estimate of the mass barycenter of the observed \(\chi_b(3P)\) signal.

Likewise, the \(\vec{m}_1 = \Delta m + m_{Y(1S)}\) and \(\vec{m}_2 = \Delta m + m_{Y(2S)}\) distributions for the sample of \(\mu^+\mu^-\gamma\) candidates reconstructed from converted photons are fitted using an unbinned extended maximum likelihood method. A simultaneous fit is performed on the \(\vec{m}_1\) and \(\vec{m}_2\) distributions for the \(\chi_b(nP) \to Y(1S)\gamma\) (for \(n = 1, 2, 3\)) and \(\chi_b(nP) \to Y(2S)\gamma\) (for \(n = 2, 3\) only) signals, with the distributions modeled by three signal components [two of which are shared between the \(Y(1S)\) and \(Y(2S)\) distributions] and two background distributions.

In the \(\Delta m\) distribution for the converted photon candidates the typical mass resolution is found to be in the range 16–20 MeV, of similar magnitude to the hyperfine splittings, motivating the need for multiple signal components for each of the \(\chi_b(np)\) peaks. For \(n = 1, 2\), the radiative branching fractions of the \(J = 0\) states are suppressed with respect to the \(J = 1, 2\) states [9] and therefore a \(J = 0\) component is not included in the fit. Similar behavior is assumed for the \(n = 3\) case. Each of the three peaks (\(n = 1, 2, 3\)) is therefore parametrized by a doublet of Crystal Ball (CB) [10] functions (corresponding to \(J = 1, 2\) states) with resolution \(\sigma\) and radiative tail parameters common to all peaks. For \(n = 1\) and \(n = 2\), the peak mass values and hyperfine splittings are fixed to the world averages [9] for the respective \(\chi_b\) states (see Table I). For \(n = 3\), the hyperfine mass splitting is fixed to the theoretically predicted value of 12 MeV [4], while the average mass is left as a free parameter. The unknown relative normalization of the \(J = 1\) and \(J = 2\) CB peaks is taken to be equal and treated as a systematic uncertainty (for all doublets) for the baseline fit.

In order to take into account energy loss from the photon conversion electrons due to bremsstrahlung and other processes, the measured values of \(\Delta m\) in the \(\vec{m}_1\) and \(\vec{m}_2\) distributions are scaled by a common parameter \(\lambda = 0.961 \pm 0.003\), which determines the energy scale and is derived from the fit to the \(\chi_b(1P, 2P)\) signals. The background components of the \(\Delta m\) distributions for the \(Y(1S)\gamma\) and \(Y(2S)\gamma\) final states are each modeled by the PDF \(N_B\exp(\Delta m - q_k^0)A_k\exp(\Delta m - q_k^0)\) for \(\Delta m > q_k^0\) and zero otherwise, where \(N_{B_k}, q_k^0, A_k,\) and \(B_k\) \((k = 1, 2)\) are all free parameters. The mean value \(\vec{m}_3\) determined by the fit is shown in Table I.

In the fit using unconverted photons, the signal is refitted using an alternative (two Gaussians) model for each of the three \(\chi_b\) states, resulting in a negligible change in the peak positions. Alternative fits to the background are also used, either including constraints on the \(\Delta m\) distribution using dimuon pairs from the low-mass \((8.0\text{ GeV} < m_{\mu\mu} < 8.8\text{ GeV})\) sideband or different background PDFs. The systematic uncertainty on the \(\chi_b(3P)\) mass barycenter from the modeling of the background distribution is determined to be \(\pm 21\text{ MeV}\). The systematic uncertainty associated with the unconverted photon energy scale is estimated to be \(\pm 2\%\) on the \(\Delta m\) position, corresponding to a systematic uncertainty on \(\vec{m}_3\) of \(\pm 22\text{ MeV}\). The uncertainties due to background modeling and photon energy scale comprise the dominant sources of systematic uncertainty.

For the fit using converted photons, alternative signal and background models are compared, and various

Table I

<table>
<thead>
<tr>
<th>State</th>
<th>Model predictions [3,4] [MeV]</th>
<th>Fitted masses [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unconverted photons</td>
</tr>
<tr>
<td>(\chi_b(1P))</td>
<td>9900</td>
<td>(9910 \pm 6\text{(stat)} \pm 11\text{(syst)})</td>
</tr>
<tr>
<td>(\chi_b(2P))</td>
<td>10260</td>
<td>(10246 \pm 5\text{(stat)} \pm 18\text{(syst)})</td>
</tr>
<tr>
<td>(\chi_b(3P))</td>
<td>10525</td>
<td>(10541 \pm 11\text{(stat)} \pm 30\text{(syst)})</td>
</tr>
</tbody>
</table>

152001-3
The mass barycenter for the \(\chi_b(3P) \) signal, determined from the fit using unconverted photon candidates is

\[
\bar{m}_3 = 10.541 \pm 0.011(\text{stat}) \pm 0.030(\text{syst}) \text{ GeV.}
\]

The mass barycenter for the \(\chi_b(3P) \) signal, determined from the fit using converted photon candidates is

\[
\bar{m}_3 = 10.530 \pm 0.005(\text{stat}) \pm 0.009(\text{syst}) \text{ GeV.}
\]

The measured mass barycenters of the \(\chi_b(1P) \), \(\chi_b(2P) \), and \(\chi_b(3P) \) systems are summarized in Table 1. The results of the converted and unconverted photon analyses for the \(\chi_b(3P) \) are found to be compatible. Given the substantially smaller systematic uncertainties in the conversion measurement, the final mass determination for \(\bar{m}_3 \) is quoted solely on the basis of this analysis.

In conclusion, the production of the heavy quarkonium states \(\chi_b(nP) \) in proton-proton collisions at \(\sqrt{s} = 7 \text{ TeV} \) is observed through the reconstruction of the radiative decay modes of \(\chi_b(nP) \rightarrow \Upsilon(1S, 2S)\gamma \). Mass peaks corresponding to \(\chi_b(1P, 2P) \) decays are observed, together with additional structures at higher mass, which are consistent with theoretical predictions for \(\chi_b(3P) \rightarrow \Upsilon(1S)\gamma \) and \(\chi_b(3P) \rightarrow \Upsilon(2S)\gamma \). These observations are interpreted as the \(\chi_b(3P) \) multiplet, the mass barycenter of which is measured to be \(10.530 \pm 0.005(\text{stat}) \pm 0.009(\text{syst}) \text{ GeV.} \)

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSE, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.), and BNL (U.S.), and in the Tier-2 facilities worldwide.

W. Walkowiak,140 R. Wall,174 P. Waller,72 C. Wang,44 H. Wang,171 H. Wang,32b,gg J. Wang,150 J. Wang,54
N. Weremes,36 M. Werner,47 P. Werner,29 M. Werth,162 M. Wessels,57a C. Weydert,54 K. Whalen,28
S. J. Wheeler-Ellis,162 S. P. Whithaker,21 A. White,7 M. J. White,85 S. R. Whitehead,117 D. Whiteson,162
C. Wiglesworth,74 L. A. M. Wiik-Fuchs,47 P. A. Wijeratne,76 A. Wildauer,166 M. A. Wildt,41a I. Wilhelm,125
H. G. Wilkens,29 J. Z. Will,97 E. Williams,34 H. H. Williams,119 W. Willis,34 S. Willocq,83 J. A. Wilson,17
M. G. Wilson,142 A. Wilson,86 I. Wingert-Seex,4 S. Winkelmann,125 G. Winklmeier,47 F. Winkler,29 M. Wittgen,142
M. W. Wolter,38 H. Wolters,123a W. C. Wong,40 G. Wooden,86 B. K. Wosiek,38 J. Wotschack,29 M. J. Woudstra,83
K. W. Wozniak,38 K. Wraight,52 C. Wright,52 M. Wright,52 B. Wronda,72 S. L. Wu,171 X. Wu,48 Y. Wu,32b,hh E. Wulf,34
R. Wunstorf,42 B. M. Wynne,45 S. Xella,35 M. Xiao,135 S. Xie,47 Y. Xie,32a C. Xu,32b,x D. Xu,138 G. Xu,32a
M. Yilmaz,36 R. Yoosoofmiya,122 K. Yorita,142 R. Yoshida,5 C. Young,142 S. Youssef,21 D. Yu,44 J. Yu,7 J. Yu,
L. Zanello,131a,131b P. Zarzhitsky,39 A. Zaytsev,106 C. Zeitnitz,173 M. Zeller,174 M. Zeman,124 A. Zemla,18
C. Zendler,20 O. Zenin,127 T. Ženiš,143a Z. Zinonos,121a,121b S. Zen,14 D. Zerwas,114 G. Zevi della Porta,56
Z. Zhan,32d D. Zhang,32b,ge H. Zhang,37 J. Zhang,5 X. Zhang,32d Z. Zhang,114 L. Zhao,107 T. Zhao,137 Z. Zhao,32b
Y. Zhu,12b X. Zhuang,97 V. Zhuravlov,98 D. Ziemiańska,60 R. Zimmermann,20 S. Zimmermann,20 S. Zimmermann,47
M. Ziolkowski,140 R. Zitoun,4 L. Živković,43 V. V. Zmouchko,127a G. Zobernig,171 A. Zoccoli,19a,19b
Y. Zolnierowski,4 A. Zsenei,29 M. zur Nedden,15 V. Zutshi,105 and L. Zwalinski29

(ATLAS Collaboration)

1University at Albany, Albany, New York, USA
2Department of Physics, University of Alberta, Edmonton AB, Canada
3Department of Physics, Ankara University, Ankara, Turkey
3aDepartment of Physics, Dumlupinar University, Kutahya, Turkey
3bDepartment of Physics, Gazi University, Ankara, Turkey
4Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5Department of Physics, University of Bath, Bath, United Kingdom
6Department of Physics, Bogazici University, Istanbul, Turkey
7Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
8Physics Division, Humboldt University, Berlin, Germany
9Department of Physics and Technology, University of Bergen, Bergen, Norway
10Physics Department, University of California, Berkeley, California, USA
11Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA,
Barcelona, Spain
12aInstitutdes Sciences et Techniques de l'Ingénieur, Groupement de Physique de l'Environnement et des Eaux,
France
12bInstituto de Física de Bauru, São Paulo, Brazil
13Department of Physics, Humboldt University, Berlin, Germany
14Department of Physics and Technology, University of Bern, Bern, Switzerland
15School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
16Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17Department of Physics, Bogazici University, Istanbul, Turkey
18aDepartment of Physics, Dogus University, Istanbul, Turkey
18bDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey