The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Lu, Yi-Chun, Hubert A. Gasteiger, Michael C. Parent, Vazrik Chiloyan, and Yang Shao-Horn. The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries. Electrochemical and Solid-State Letters 13, no. 6 (2010): A69. © 2010 ECS - The Electrochemical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1149/1.3363047</td>
</tr>
<tr>
<td>Publisher</td>
<td>Electrochemical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Dec 18 23:41:59 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/79694</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Rechargeable Li-air battery performance with aprotic organic electrolytes is limited by cathode kinetics, viz., the formation and decomposition of lithium (per)oxide

\[2Li^+ + 2e^- + O_2 \rightarrow (Li_2O_2)_{\text{solid}} \quad E_{\text{rev}} = 2.96 \text{ V}_{\text{Li}} \quad \text{(See Ref. 1a)} \]

\[4Li^+ + 4e^- + O_2 \rightarrow 2(Li_2O)_{\text{solid}} \quad E_{\text{rev}} = 2.91 \text{ V}_{\text{Li}} \quad \text{(See Ref. 1b)} \]

with reversible cell voltages, \(E_{\text{rev}} \) referenced vs Li/Li\(^+\) (as all potentials throughout this article). Although \(E_{\text{rev}} \) for \(Li _2O_2 \) is often reported as \(\approx 3.1 \text{ V}_{\text{Li}} \), no references to the thermodynamic database underlying its derivation were provided. \(E_{\text{rev}} \) for the \((Li_2O_2)_{\text{solid}} \) formation derived from published Gibb's free energy values is 2.96 \(\text{V}_{\text{Li}} \) (\(G = -AG/nF \), where \(AG \) is the Gibb's free energy of the reaction, \(n \) is the number of electrons transferred, and \(F \) is the Faraday constant).\(^1\) Single-cell Li-air battery tests followed by ex situ Raman spectroscopy\(^2,4\) have revealed \(Li_2O_2 \) as the major discharge product, while oxygen consumption measurements during discharge suggest a partial formation of \(Li_2O \).\(^3\) The latter could also form as a secondary product during discharge\(^1\)

\[(Li_2O_2)_{\text{solid}} + 2Li^+ + 2e^- \rightarrow 2(Li_2O)_{\text{solid}} \quad E_{\text{rev}} = 2.87 \text{ V}_{\text{Li}} \quad \text{(3)} \]

Not only can Li-air battery cathode catalysts determine the current-dependent charge/discharge potentials (i.e., the roundtrip efficiency) but they also affect whether \(Li_2O_2 \) vs \(Li_2O \) is formed because \(E_{\text{rev}} \) for \(Li_2O_2 \) and \(Li_2O \) formation is very similar. Unfortunately, the effect of catalysts on the reaction kinetics of the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during charging in rechargeable Li-air batteries using aprotic electrolytes is poorly understood, hindering the progress of this technology. The ORR mechanism in aprotic electrolytes is complex and poorly understood. Hummelshoj et al.\(^1\) suggested that oxygen can be reduced by lithium via a one-electron transfer process forming \(LiO_2 \) (adsorbed on the surface). This is followed by another one-electron reduction forming \(Li_2O_2 \) (solid). Alternatively, Lafore and co-workers\(^1\) proposed that \(LiO_2 \) could chemically decompose to \(Li_2O_2 \) and \(O_2 \) through a disproportionation reaction. The further reduction of \(Li_2O_2 \) to \(Li_2O \) is also thermodynamically possible in the typical discharge potential range of \(Li_2O_2 \) batteries (2.8–2.0 \(\text{V}_{\text{Li}} \)).\(^1\)

Li-air battery specific capacities, however, are dominated by the electrode porosity required to provide \(Li_2O_2 \) storage\(^2\) and by oxygen diffusion through the electrolyte-flooded pores.\(^3\) Thus, using high oxygen pressures and electrolytes with high oxygen solubility increases specific activities,\(^4\) which is consistent with current distribution modeling.\(^10\)

Conventionally, specific capacities for carbon-based Li-air cathodes are normalized to carbon weight, with values reported as high as 2500–5000 mAh/g\(_{\text{carbon}}\).\(^1,11,12\) For cathodes based on high surface area carbon blacks with a carbon volume fraction of \(\approx 15\% \),\(^13\) the maximum specific capacities can be estimated by assuming a required electrolyte volume fraction of 25% (capacities calculated this way were experimentally verified for the ice-filling of fuel cell cathodes\(^14\) discharged at \(-20^\circ\text{C}\) and 10 mA/cm\(^2\)). While these estimated maximum capacities shown in Table I agree well with capacities reported at low discharge rates (e.g., \(5000 \text{ mAh/g}_{\text{carbon}} \) at 0.01 mA/cm\(^2\)electrode\(^11\)) lower capacities are obtained at higher discharge rates\(^3,9,10\) having a lower degree of electrode pore filling with \(Li_2O_2 \).\(^10\) To compare cathode capacities of Li-air with those of Li-ion batteries, capacities must be normalized to the lithiated (discharged) cathode mass, including carbon in Li-air cathodes due to its high mass fraction. Table I shows that >5-fold higher specific capacities and >4-fold higher specific energies are projected for Li-air cathodes compared to state-of-the-art LiCoO\(_2\), whereby a considerably higher capacity could be obtained by catalyst selective for \(Li_2O_2 \) formation during discharge and active for electro-oxidizing \(Li_2O \) upon charging.

Although catalysts should affect discharge (ORR) and charge (OER) potentials, very similar average discharge voltages of \(\approx 2.6 \text{ V}_{\text{Li}} \) have been shown for a wide range of catalysts (carbon, Pt, and transition-metal oxides),\(^1,12\) identical with values reported for \(\lambda-MnO_2\),\(^3\) \(\alpha-MnO_2 \) nanowires,\(^4\) \(MnO_2/C\),\(^12\) and carbon-supported pyrolyzed Co macrocycles\(^7\) at comparable discharge currents (70 mA/g\(_{\text{carbon}}\) or 0.1 mA/cm\(^2\)electrode).\(^13\) This could either be explained by assuming that the ORR in a Li-air cathode is not a catalytically sensitive reaction or by assuming that the ORR activity of added carbon itself is sufficiently high to mask the ORR activity of catalysts of interest (most Li-air battery catalyst studies use cathodes with 60–75 wt % carbon).\(^3,13\) Conversely, the charging (OER) activity of carbon is poor, with an average voltage plateau of \(\approx 4.7 \text{ V}_{\text{Li}} \) vs \(\approx 4.2 \text{ V}_{\text{Li}} \) on \(MnO_2/C\) and \(\approx 4.0 \text{ V}_{\text{Li}} \) on \(\lambda-MnO_2\),\(^3\) \(\alpha-MnO_2 \) nanowires,\(^4\) and \(Co_3O_4 \)\(^15\) (70 mA/g\(_{\text{carbon}}\) or 0.1 mA/cm\(^2\)electrode). The lowest charging voltage reported so far was \(\approx 3.6 \text{ V}_{\text{Li}} \) for pyrolyzed cobalt phthalocyanine supported on carbon,\(^2\) which was measured, however, at a lower rate of 0.05 mA/cm\(^2\)electrode. Clearly, catalyst development is needed to reduce the ORR/OER potential losses and to increase the Li-air battery roundtrip efficiency.

Here, we compare the effect of catalyzed (40 wt % Au/C or 40 wt % Pt/C) and pure Vulcan-XC72 carbon cathodes on the discharge and charge voltages of single-cell Li-O\(_2\) batteries. The discharge and charge voltage profiles of Li-O\(_2\) cells reveal that 40 wt % Au/C is most active for the ORR while 40 wt % Pt/C has remarkable activity for charging (OER). These findings agree well with the oxidative current densities obtained from potentiostatic measurements of Li/Li\(_2O_2\) cells, reflecting the activity associated with the electro-oxidation of Li\(_2O_2\) on these catalysts.
Experimental

All experiments were conducted at room temperature in 1 M LiClO4 in a propylene carbonate (PC):1,2-dimethoxyethane (DME) (1:2 v/v) electrolyte, prepared from LiClO4, PC, and DME from Sigma-Aldrich (all < 30 ppm H2O). The solvent system was chosen because most Li-air battery data in the literature used either PC or PC with co-solvents. Figure 1 shows the Li–O2 battery configuration used in this study, consisting of a lithium foil (15 mm diameter), two pieces of Celgard separator (C480, 17 mm diameter), and a Nafion-bonded cathode (12.7 mm diameter) coated on a Celgard C480 using either pure Vulcan XC-72 carbon, 40 wt % Au/C (Vulcan), or 40 wt % Pt/C (Vulcan) from Premetek. High metal loading catalysts were used to ensure that the performance of cathodes with Au/C and Pt/C in Li–O2 cells reflected differences in the intrinsic catalytic activity of Au and Pt relative to C. Due to the high electronic conductivity of carbon in the Nafion-bonded electrodes (~1 S/cm), electron conduction resistances in all cathodes were negligible. Au/C and Pt/C dispersions estimated from X-ray powder diffraction line broadening were ~13 m2/gAu and ~80 m2/gPt, respectively. Cathode lines with a Nafion/carbon weight ratio of 0.5/1 were prepared by coating ultrasonicated inks composed of carbon or catalyst, Nafion dispersion (DE2020, Ion Power), and 2-propanol (Sigma-Aldrich) onto the separator. After air-drying at 20°C for about 20 min and subsequent vacuum-drying for 3 h, the cathodes were weighed and then soaked in excess electrolyte, yielding lithium-ion-exchanged Nafion. All cathode carbon loadings were within 0.65 ± 0.15 mg (0.51 ± 0.12 mg/cm2 electrode). Li–O2 cells were assembled in the following order: (i) placing a lithium foil onto the cell’s stainless steel current collector, (ii) adding 10 µL of electrolyte, (iii) placing two pieces of the separator onto the lithium foil, (iv) adding 10 µL electrolyte, (v) placing the cathode-coated separator onto the separator, (vi) adding two on top a cathode current collector (316 stainless steel mesh and spring), and (vii) purging the cell with PC/DME-saturated oxygen for 10 min. Afterward, the cells were sealed and tested galvanostatically (Solartron 1470) at 0.1 mA/cm2 electrode with a low voltage limit of 2.0 VLi and with upper limits of 4.5 VLi, and subsequently at 4.5 VLi, before the next discharge, 4.4 VLi (Au/C, no holding), and 4.0 VLi (Pt/C, no holding) to avoid electrolyte decomposition.

![Figure 1](https://example.com/figure1.png)

Figure 1. (Color online) (a) Li–O2 single-cell configuration. (b) Li–O2 single-cell discharge/charge (second cycle) at 0.1 mA/cm2 electrode, corresponding to ~150 mA/gcarbon (carbon) or ~250 mA/gcarbon (Au/C and Pt/C). (c) Background measurement during charging at 0.1 mA/cm2 electrode, of an argon-filled cell for pure carbon, 40 wt % Pt/C, and 40 wt % Au/C.

The activity of the Vulcan-XC72 (40 wt % Au/C and 40 wt % Pt/C) catalysts for the electro-oxidation of Li2O2 (OER) was measured in argon-filled cells (Tomcell type TJ-AC) with a lithium anode and two Celgard 2500 separators. Kynar-bonded cathodes were with and without Li2O2 were prepared from ultrasonicated inks containing carbon or catalyst, poly(vinylidene fluoride) (PVDF, Kynar) dissolved in N-methyl pyrrolidone (<50 ppm H2O, Alfa Aesar), and ground Li2O2 (Aldrich 90%) for Li2O2-filled electrodes. Inks were coated onto aluminum foil (0.019 mm thick, McMaster), vacuum-dried at 70°C, and cut (15 mm diameter). Cathode carbon loadings were within 0.85 ± 0.15 mg (0.48 ± 0.08 mg/cm2 electrode) at a PVDF/carbon weight ratio of 3.6/1. The Li2O2 (carbon) weight ratio was 1/1, equating to an estimated charging capacity of 1050 mAh/gcarbon for Li2O2 ↔ 2Li+ + O2 (considering 90% Li2O2 sample purity). Potentiostatic tests were performed at 4.0–4.5 VLi for 10 h after an initial 30 min rest following cell assembly. Net Li2O2 electro-oxidation currents were obtained by subtracting carbon-mass normalized currents of Li2O2-free electrodes from those filled with Li2O2. While Al current collectors were used in Li-air cathodes previously, some minor Al corrosion was reported to occur at 4.5 VLi in LiClO4-based electrolytes (15 µA/cm2).13 We thus examined the background current densities from Li2O2-free electrodes, which were 1–2 orders of magnitude lower than those from Li2O2-filled electrodes measured at 4.5 VLi (>150 µA/cm2 electrode or >300 mA/gcarbon). This agrees with the observation that no apparent change for the Al current collectors was found after any measurements of electrodes without or with Li2O2.

Results and Discussion

Galvanostatic discharging and charging tests under oxygen (Fig. 1b) reveal pronounced catalytic effects for both ORR and OER. The ORR activity trends are obtained by comparing the discharge voltage profiles of Li–O2 cells with different catalysts. 40 wt % Au/C demonstrated an onset voltage of ~2.8 V Li and its average voltage plateau of ~2.7 V Li (only ~0.3 V lower than the estimated equilibrium voltage of 2.96 V Li for Li2O2 formation) is higher than those of manganese-oxide-based cathodes at lower (70 mA/gcarbon)14,15 or equal discharge currents.

Table I. Maximum specific capacity and energy for Li-air cathodes compared to LiCoO2 intercalation cathodes in current Li-ion batteries.

<table>
<thead>
<tr>
<th></th>
<th>Li2O2</th>
<th>Li2O</th>
<th>LiCoO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>4600</td>
<td>6000</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Discharge voltage (V)</td>
<td>2.75</td>
<td>2.75</td>
<td>3.9</td>
</tr>
<tr>
<td>Energy</td>
<td>2450</td>
<td>3700</td>
<td>620</td>
</tr>
</tbody>
</table>

Underlying assumptions for carbon black (e.g., Vulcan-XC72) based Li-air cathodes: (i) carbon packing density of 0.36 g/cm3 with ~15% carbon volume fraction; (ii) 25% electrolyte volume fraction, and (iii) complete filling of the 60% void volume fraction with Li2O3 product.
(0.1 mA/cm² electrode). The pure Vulcan carbon provides an onset voltage of ≈2.7 VLi and an average voltage plateau of ≈2.6 VLi, while 40 wt % Pt/C shows a lower discharge voltage of ≈2.5 VLi, which may thus be rationalized by blocking of the Vulcan carbon surface by Pt having lower activity (estimated > 25% of the Vulcan surface for 40 wt % Pt/C based on ≈30 m²/gcatalyst and ≈60 m²/gcarbon using the external surface areas of Pt and Vulcan). This order of activity is consistent with a cyclic voltammetry study on the ORR activity of flat model electrodes in the same electrolyte, yielding an intrinsic ORR activity trend of Au > glassy carbon > Pt. Thus, no measurable difference in the discharge voltages of cathodes with different catalysts reported previously can be attributed to the reasonably high intrinsic ORR activity of carbon and its large mass fraction in these cathodes (≈60 to 75 wt %). Lastly, although solid Li2O2 products are formed during discharge, the discharge voltage of Au/C is higher than that of Pt/C and C, suggesting that the Li2O2 formation is catalyzed by the Au surface throughout most of the discharge process, analogous to what is found for the water–ice formation reaction during oxygen reduction in a fuel cell at −20°C.

Specific discharge capacities of Li–O2 cells at 0.1 mA/cm² electrode or 250 mA/gcarbon (Fig. 1b) with Au/C were ≈1500 mAh/gcarbon, which is roughly 2–3 times lower than that reported for MnO2-based cathodes discharged at a lower rate of 70 mA/gcarbon.4 The difference is likely due to the generally observed increase in specific capacity with decreasing current densities.3,10 However, only ≈800 mA/gcarbon was observed for pure Vulcan and Pt/C electrodes. Because all our cathodes have the same carbon loading and thickness and because the void volume fraction of catalyzed and noncatalyzed Vulcan-carbon electrodes is essentially the same (the metal volume fraction is negligible),13 all of our cathodes should have the same available volume for Li2O2 storage. Because the latter strongly affected specific discharge capacities, one would expect to obtain similar specific capacities for our cathodes, independent of the catalyst. Although it is relatively straightforward to relate the enhanced ORR kinetics of Au/C to increased discharge voltages, the substantially higher discharge specific capacity for Au/C (reducible over three cells) compared to carbon and Pt/C is not understood. We suggest that different catalysts may yield different reaction products (Li2O2, Li2O, or Li2O3), analogous to the ORR in aqueous electrolytes with predominantly H2O2 on Au and C, in contrast to H2O on Pt. Thus, variation in discharge product formation/distribution in the cathode may affect the discharge capacity, which needs to be examined in future studies.

40 wt % Pt/C demonstrated an average charging plateau of ≈3.8 VLi in Fig. 1b, substantially below the onset voltage of electrolyte decomposition. To determine the influence of electrolyte decomposition on the OER current, the cells were first charged under argon at 0.1 mA/cm² electrode revealing electrolyte decomposition on Pt/C at ≈4.1 VLi compared to ≈4.5 VLi on carbon and Au/C (Fig. 1c). The charging voltage of Pt/C is lower than the ≈4.0 VLi reported for manganese oxides and Co3O4 at lower (70 mA/gcarbon)4,12,15 or equal currents (0.1 mA/cm² electrode). Thus, it was lower than the 250 mA/gcarbon used in this study. It is followed by the Au/C catalyst (half-capacity at ≈4.2 VLi), which in turn is more active than high surface area (240 m²/g) Vulcan carbon (half-capacity at ≈4.4 VLi). Vulcan is more active than Super-S with only 40 m²/g (≈4.7 VLi) at 70 mA/gcarbon reported previously,15 reflecting the importance of catalyst surface area on reaction rates and cell voltages. As the charging voltage of Li–O2 cells is influenced not only by the catalyst OER activity but also by catalyst-dependent discharge products (Li2O2 vs Li2O3), Fig. 1b only affords a qualitative OER activity comparison. Because Li2O2 is reported as the major discharge product in Li–O2 cells,7,15 we further compared the electro-oxidation activity (current densities) of Li2O2 with Au/C, C, and Pt/C catalysts with the trend in the charging voltage of Li–O2 cells shown in Fig. 1b. The activity for the electro-oxidation of Li2O2 on these three catalysts was measured by the potentiostatic charging of Li2O2-filled cathodes. For carbon cathodes, net currents of ≈150 mA/gcarbon were obtained at 4.2 VLi (Fig. 2a) and the current was negligible at 4.0 VLi, which is consistent with the Li–O2 cell data in Fig. 1b (background currents in Li2O2-free electrodes were negligible; see the Experimental section). Furthermore, the accumulated charge agrees, within experimental error, with the estimated charging capacity (see the Experimental section). The same was observed for galvanostatically charged Li2O2-filled Super-S carbon-based cathodes,16 even though their charging voltage (≈4.5 VLi, at 10 mA/gcarbon) is substantially higher than that of the Vulcan-based cathodes shown in Fig. 2a (4.2 VLi at ≈100 mA/gcarbon), probably due to the faster reaction rates per gram of carbon obtained for Vulcan with a higher surface area (240 m²/g) than Super-S (40 m²/g). While the charging current density clearly must decrease with increasing time (specific capacity) as Li2O2 is depleted by oxida-
dation (Fig. 2a), the origin of the initial increase in current density is not understood, which might be related to the increase in available surface reaction sites during the initial stages of Li$_2$O$_2$ oxidation. At 4.0 V$_{Li}$, the Li$_2$O$_2$ electro-oxidation current density was found the highest for Pt/C, then for Au/C, and lowest for carbon, which mirrors the trend in the charging voltage of Li–O$_2$ cells (Fig. 1b). The Pt/C cathode can provide a charging rate > 200 mA/g$_{carbon}$ at 4.0 V$_{Li}$, which is more active for the electro-oxidation of Li$_2$O$_2$ than the manganese oxide having 10 mA/g$_{carbon}$ at \approx4.3 V$_{Li}$ in similar experiments.16 The intrinsic Li$_2$O$_2$ electro-oxidation activities on Au/C and Pt/C were obtained by normalizing current densities to the metal surface area in the cathode, as shown in Fig. 2c. It shows that Pt/C and Au/C have a comparable intrinsic Li$_2$O$_2$ decomposition activity; consequently, Au/C catalysts with higher dispersion than 13 m2/g$_{Au}$ should yield a similarly high charging activity as the Pt/C catalyst (\approx80 m2/g$_{Pt}$) used in this study.

Conclusions

This study shows the strong influence of carbon, Au/C, and Pt/C catalysts on the charge and discharge potentials of rechargeable Li–O$_2$ batteries. A single-cell Li–O$_2$ battery reveals that Au/C is the most effective ORR catalyst in comparison to a Vulcan carbon and Pt/C (Au/C \gg C $>$ Pt/C). Conversely, Pt/C is the most effective catalyst for the charging of Li–O$_2$ cells, i.e., providing one of the lowest reported charging voltages (\approx3.8 V$_{Li}$ at 250 mA/g$_{carbon}$), which agrees well with its high electro-oxidation activity in Li$_2$O$_2$-filled cathodes at 4.0 V$_{Li}$.

Acknowledgments

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the DOE (DE-AC03-76SF00098 with LBNL) and an MIT fellowship from the Martin Family Society of Fellows for Sustainability. This research made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award no. DMR 0819762.

Massachusetts Institute of Technology assisted in meeting the publication costs of this article.

References