Temporal and spatial variability in the aviation NO\textsubscript{x}-related O\textsubscript{3} impact

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Gilmore, Christopher K, Steven R H Barrett, Jamin Koo, and Qiqi Wang. “Temporal and spatial variability in the aviation NO\textsubscript{x}-related O\textsubscript{3} impact.” Environmental Research Letters 8, no. 3 (September 1, 2013): 034027.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1088/1748-9326/8/3/034027</td>
</tr>
<tr>
<td>Publisher</td>
<td>IOP Publishing</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu May 03 19:07:44 EDT 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/81430</td>
</tr>
<tr>
<td>Terms of Use</td>
<td></td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Temporal and spatial variability in the aviation NO\textsubscript{x}-related O\textsubscript{3} impact

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2013 Environ. Res. Lett. 8 034027

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 18.51.4.93
This content was downloaded on 16/10/2013 at 17:40

Please note that terms and conditions apply.
Temporal and spatial variability in the aviation NO\textsubscript{x}-related O\textsubscript{3} impact

Christopher K Gilmore, Steven R H Barrett, Jamin Koo and Qiqi Wang

Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA

E-mail: sbarrett@mit.edu

Received 12 May 2013
Accepted for publication 15 August 2013
Published 4 September 2013
Online at stacks.iop.org/ERL/8/034027

Abstract

Aviation NO\textsubscript{x} emissions promote tropospheric ozone formation, which is linked to climate warming and adverse health effects. Modeling studies have quantified the relative impact of aviation NO\textsubscript{x} on O\textsubscript{3} in large geographic regions. As these studies have applied forward modeling techniques, it has not been possible to attribute O\textsubscript{3} formation to individual flights. Here we apply the adjoint of the global chemistry–transport model GEOS-Chem to assess the temporal and spatial variability in O\textsubscript{3} production due to aviation NO\textsubscript{x} emissions, which is the first application of an adjoint to this problem. We find that total aviation NO\textsubscript{x} emitted in October causes 40\% more O\textsubscript{3} than in April and that Pacific aviation emissions could cause 4–5 times more tropospheric O\textsubscript{3} per unit NO\textsubscript{x} than European or North American emissions. Using this sensitivity approach, the O\textsubscript{3} burden attributable to 83 000 unique scheduled civil flights is computed individually. We find that the ten highest total O\textsubscript{3}-producing flights have origins or destinations in New Zealand or Australia. The top ranked O\textsubscript{3}-producing flights normalized by fuel burn cause 157 times more normalized O\textsubscript{3} formation than the bottom ranked ones. These results show significant spatial and temporal heterogeneity in environmental impacts of aviation NO\textsubscript{x} emissions.

Keywords: aviation, ozone, adjoint

1. Introduction

As the demand for aviation continues to increase, a more complete understanding of the impact of aircraft emissions on the environment is required to make informed aviation policy, design and operational decisions. Aircraft emissions have two primary environmental impacts. First, emissions in the lower as well as upper troposphere increase the concentration of ground-level particulate matter and ozone (Barrett et al 2010), which can lead to detrimental human health impacts (Pope 2002, Laden et al 2006). Second, aircraft emissions have a range of climate impacts, as has been reviewed by Lee et al (2010). This has motivated the development of policy, technology and operational initiatives to reduce the environmental impacts of aviation (FAA 2011, Mahashabde et al 2011).

In particular, the atmospheric impact of aviation NO\textsubscript{x} emissions has been a focus of previous atmospheric chemistry–transport modeling studies (Lee et al 2010). The introduction of additional NO\textsubscript{x}, especially at high altitudes, leads directly to the formation of ozone (O\textsubscript{3}), one of the naturally occurring greenhouse gases in the atmosphere. The direct ozone radiative forcing (RF) of aviation is approximately equal to (within ~6\%) the CO\textsubscript{2} RF of aviation in 2005. We note, however, that the latter RF is due to the whole history of aviation emissions given the long atmospheric lifetime of CO\textsubscript{2}, while the direct O\textsubscript{3} RF is only a function of the past ~2 months of emissions (Stevenson and Derwent 2009). Aircraft NO\textsubscript{x} emissions also increase the oxidative capacity of the atmosphere due to an increase
in the OH production rate (Kohler 2010). Increasing OH concentrations lead to a decrease in methane lifetime, which subsequently results in a decadal loss in O\textsubscript{3}. Lee et al (2010) estimates the total RF due to aircraft NO\textsubscript{x} emissions at +0.0138 W m-2, where approximately half of the direct (i.e. short-term) ozone RF of +0.0263 W m-2 is offset by longer time scale impacts. This letter examines direct O\textsubscript{3} production due to aviation NO\textsubscript{x}, which is potentially amenable to operational or routing mitigation measures—but we note that the longer-term effects are also important and there are significant uncertainties in these (Holmes et al 2011).

Aircraft NO\textsubscript{x} emissions, as compared to other anthropogenic sources, are important because the production efficiency of ozone at cruise altitudes (9–12 km) is higher than the production efficiency at ground level (Stevenson et al 2004, Kohler et al 2008), and the RF efficiency (forcing per molecule) at cruise altitudes is relatively high (Naik et al 2005). Despite the reasonably well understood chemistry of aviation-attributable O\textsubscript{3}, decreasing the ozone impact of aviation is complicated by the relatively short ozone lifetimes and the dependency of ozone production and destruction on the local chemical state of the atmosphere and local transport characteristics. Thus, decreasing NO\textsubscript{x} emissions in one particular region may not be as effective in reducing aviation’s climate impact as decreasing emissions elsewhere, making the optimal mitigation strategy unclear.

Previous (perturbation) studies have focused on the differences in regional impacts of ground-level anthropogenic NO\textsubscript{x} emissions, with Naik et al (2005) concluding that anthropogenic NO\textsubscript{x} reductions in Southeast Asia have the largest impact on total and upper-tropospheric ozone concentrations. Fry et al (2012) obtained similar results, but also concluded that reductions in NO\textsubscript{x} emissions create atmospheric warming due to the recovery of atmospheric methane given reductions in OH concentrations. Aircraft NO\textsubscript{x} focused studies, such as those by Stevenson et al (2004) and Kohler et al (2008), were bulk region perturbation studies. Stevenson et al (2004) examined the size and duration of the O\textsubscript{3} and OH perturbation given aircraft NO\textsubscript{x} emissions at different times of year, while Kohler et al (2008) perturbed aircraft NO\textsubscript{x} emissions within several altitude bins and observed their relative impacts. A more recent perturbation study by Kohler et al (2012) showed that forcing attributable to short-term O\textsubscript{3} peaks near the equator when compared to higher latitudes and also determined that the net forcing due to NO\textsubscript{x} emissions is positive (i.e. warming).

These perturbation studies were based on taking the difference of forward atmospheric chemistry–transport simulations. Such approaches have the benefit of both being relatively straightforward to implement and show the spatially varying impact of emissions, but only work for perturbations of sufficient size to avoid subtractive errors. A perturbation approach also requires a simulation for every location and time of interest, making the assessment of more than a few locations or times computationally intractable. Here we apply an adjoint sensitivity approach, which results in the sensitivity of an objective function (tropospheric O\textsubscript{3}) to NO\textsubscript{x} emissions at all locations and times from one simulation. The only previous application of an adjoint sensitivity approach to aviation NO\textsubscript{x}–O\textsubscript{3} is given in table 1 of the supporting information of Bowman and Henze (2012), who applied adjoint modeling to determine the contribution of several sectors to the total O\textsubscript{3} instantaneous radiative effect for August 2006; such an approach has not been used in the current context before.

The tropospheric O\textsubscript{3} impact of individual flights has not previously been computed. While operational strategies to mitigate contrails from aviation have previously been investigated, this has not been possible for aviation-attributable O\textsubscript{3} as this requires quantification of impacts at the resolution of a single flight. The aim of this letter is therefore to quantify the O\textsubscript{3} impact of individual civil aviation flights and to quantify the spatial and temporal variability in the impact of aviation NO\textsubscript{x} emissions. We also assess the primary chemical production and loss pathways relevant to O\textsubscript{3} and compare aggregate results to previous work. This represents new understanding of the variability in the atmospheric impacts of flights and a step towards estimating the O\textsubscript{3}-related benefits of flight-level operational optimization.

2. Methodology

This section describes the modeling techniques applied to determine the spatial and temporal heterogeneity in the aviation-attributable O\textsubscript{3} and the methodology for computing the per flight ozone impacts.

2.1. GEOS-Chem and the GEOS-Chem adjoint

GEOS-Chem was used in this analysis (Bey et al 2001). GEOS-Chem is a global chemistry–transport model that includes transport, wet and dry deposition, and gas and aerosol phase chemistry. Gas phase chemistry is solved using the kinetic pre-processor tool (KPP) developed by Damian et al (2002). All simulations use a 4° × 5° horizontal grid with 47 vertical layers, which includes pressure levels up to 0.010 hPa. GEOS-Chem is primarily a tropospheric model (i.e. a full chemistry simulation is performed up to the tropopause) where linearized ozone chemistry is used within the stratosphere. Each simulation in this study is for 16 months, where the first four months are used as spin-up.

The GEOS-Chem adjoint model was developed by Henze et al (2007). The model was first used for aviation in particular to determine the impact of aircraft emissions on surface air quality by Koo et al (2013). Adjoint models, in general, are applied in sensitivity analysis when the (typically single) output quantity of interest is set and the sensitivity of that output to (many) model input parameters is desired. The adjoint approach avoids an ensemble of forward model runs in calculating sensitivities, where only one ‘backwards’ integrating simulation is required for each output of interest. This is of particular use in studying the impact of aviation given that we are generally interested in total global or regional (e.g. North America, Asia) impacts, where every emissions grid cell is an input. The fundamentals of this approach are described in Errico (1997) for the application of adjoint models in meteorological study.
Anthropogenic emissions inputs for GEOS-Chem are detailed in van Donkelaar et al. (2008). Aircraft emissions are derived from the methodology presented in Barrett et al. (2010) and uses the 2005 civil aviation emissions inventory by Simone et al. (2013). NO\textsubscript{x} emissions are given on an NO\textsubscript{2} mass basis where emissions are partitioned by mole fraction. Cruise emissions are partitioned as 90\% NO, 9\% NO\textsubscript{2}, and 1\% HONO (Barrett et al. 2010). Landing/take-off (LTO) emissions are partitioned as 76\% NO, 23\% NO\textsubscript{2}, and 1\% HONO (Barrett et al. 2010). Full-flight emissions (i.e., LTO and cruise emissions) are used in this analysis, where total aircraft NO\textsubscript{x} emissions amount to 2.66 Tg(NO\textsubscript{2}), annually. We also note that chemistry within aircraft exhaust plumes is neglected, where emissions are assumed to be instantaneously diluted into the local grid cell.

2.2. Sensitivities to aircraft emissions

The quantity of interest is the annually averaged O\textsubscript{3} perturbation due to aircraft NO\textsubscript{x} emissions, which is given by

\[
\delta O_3 = \frac{\sum_{i=1}^{N_{LAT}} \sum_{j=1}^{N_{LAT}} \sum_{k=1}^{N_{TROP}} T \sum_{t=1}^{T} \frac{\partial J}{\partial E_{NO_x}(i,j,k,t)} \times E_{NO_x}(i,j,k,t)}{T}
\]

where \(E_{NO_x}\) is the time-varying three-dimensional emissions matrix, \(T\) is the number of time steps within the (one year) period over which O\textsubscript{3} impacts are averaged, \(N_{LAT}\) is the number of latitude grid cells, \(N_{LAT}\) is the number of longitude grid cells, \(N_{TROP}\) is the number of troposphere altitude layers, and \(\frac{\partial J}{\partial E_{NO_x}}\) is the adjoint sensitivity with objective function

\[
J = \sum_{i=1}^{N_{LAT}} \sum_{j=1}^{N_{LAT}} \sum_{k=1}^{N_{TROP}} T M_{O_3}(i,j,k,t)
\]

with \(M_{O_3}\) being the mass of O\textsubscript{3} in a model grid cell. The adjoint sensitivity \(\frac{\partial J}{\partial E_{NO_x}}\) — a four-dimensional matrix — is therefore the total subsequent change in tropospheric O\textsubscript{3} burden given 1 kg of NO\textsubscript{x} emitted at a location \(i, j, k\) and time \(t\).

Applying first-order sensitivities in estimating impacts assumes a linear relationship between the specie of interest and aircraft emissions at the level of the perturbation being considered. This assumption has been shown to be valid for the O\textsubscript{3} response to total aircraft NO\textsubscript{x} for a range of emissions perturbations in magnitude and altitude (Kohler et al. 2008). We infer that the linear approximation is at least as valid for individual flights as for all aviation NO\textsubscript{x}. Diurnal variations in sensitivities are not considered in this analysis as the daily variations in ozone production from aircraft NO\textsubscript{x} emissions was <2\% of the seasonal variation based on a spectral (FFT) analysis of aircraft NO\textsubscript{x} emissions-weighted sensitivity data. This is not necessarily true of ground-level sensitivities.

2.3. Chemical pathways analysis

In order to determine the primary drivers behind the temporal as well as spatial patterns of the calculated ozone sensitivities, a simplified analysis of the underlying chemistry in the forward simulations is performed. The time rate of change for any given specie within a chemical kinetic system is the difference between the total production and loss rates. Each production and loss rate in turn is a function of the product of the rate coefficient and the relevant species concentrations (Seinfeld and Pandis 2006). Solving chemical kinetics represents a challenge given the stiffness of the system (i.e., orders of magnitude differences in reaction rate time scales), where implicit methods are used to avoid small time steps (Hairer and Wanner 2002). Here, a simplified approach is taken to quantify each pathway’s contribution. The total ozone rate of change is disaggregated into its most significant production and loss pathways (significant being ~5\% of the total rate within the chemistry time step). A weighted average is then performed for each pathway during chemistry in order to determine a characteristic rate of change for that one hour time step, where the weightings are determined by the length of the sub-time steps (which sum to one hour) required to maintain convergence of the solver. These weighted averages are then directly compared for different locations and times to approximately quantify how the time evolution of the aviation-attributable O\textsubscript{3} is determined by the underlying chemistry. The pathways considered in this analysis are stated in table 1. Note that reaction (1) in GEOS-Chem is combined with NO\textsubscript{2} photolysis to form a single chemical reaction (NO\textsubscript{2} \rightarrow NO + O\textsubscript{3}), which implicitly includes atomic oxygen’s reaction with molecular oxygen to produce O\textsubscript{3}. In addition, reactions (1) and (2) are combined to form the ‘production’ pathway as they are primary source and sink, respectively, of O\textsubscript{3} in the troposphere and their net rate determines the ozone production rate within the troposphere. This pathway is further discussed in section 3.1.

2.4. Calculating the impact of individual flights

Table 1. Pathways of O\textsubscript{3} production and loss considered in the chemical pathway analysis.

<table>
<thead>
<tr>
<th>Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) O + O\textsubscript{3} + M \rightarrow O\textsubscript{2} + M</td>
</tr>
<tr>
<td>(2) O\textsubscript{3} + NO \rightarrow NO\textsubscript{2} + O\textsubscript{2}</td>
</tr>
<tr>
<td>(3) O\textsubscript{3} + OH \rightarrow HO\textsubscript{2} + O\textsubscript{2}</td>
</tr>
<tr>
<td>(4) O\textsubscript{3} + HO\textsubscript{2} \rightarrow OH + 2O\textsubscript{2}</td>
</tr>
<tr>
<td>(5) O\textsubscript{3} + NO\textsubscript{2} \rightarrow NO\textsubscript{3} + O\textsubscript{2}</td>
</tr>
<tr>
<td>(6) O\textsubscript{3} + h\textsubscript{v} \rightarrow O\textsubscript{2} + O(\textsubscript{3}P)</td>
</tr>
<tr>
<td>(7) Dry deposition</td>
</tr>
</tbody>
</table>

Once four-dimensional sensitivity data have been calculated, the first-order atmospheric response of O\textsubscript{3} concentrations to aircraft NO\textsubscript{x} emissions can be estimated. The aircraft emissions model by Simone et al. (2013) generates three-dimensional emissions matrices for each aircraft type flown between a pair of airports. Following the generation of the gridded emissions data for a particular scenario, the first-order response can then be determined by taking the inner product (i.e., component-wise multiplication and summation) between

<table>
<thead>
<tr>
<th>Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) O + O\textsubscript{3} + M \rightarrow O\textsubscript{2} + M</td>
</tr>
<tr>
<td>(2) O\textsubscript{3} + NO \rightarrow NO\textsubscript{2} + O\textsubscript{2}</td>
</tr>
<tr>
<td>(3) O\textsubscript{3} + OH \rightarrow HO\textsubscript{2} + O\textsubscript{2}</td>
</tr>
<tr>
<td>(4) O\textsubscript{3} + HO\textsubscript{2} \rightarrow OH + 2O\textsubscript{2}</td>
</tr>
<tr>
<td>(5) O\textsubscript{3} + NO\textsubscript{2} \rightarrow NO\textsubscript{3} + O\textsubscript{2}</td>
</tr>
<tr>
<td>(6) O\textsubscript{3} + h\textsubscript{v} \rightarrow O\textsubscript{2} + O(\textsubscript{3}P)</td>
</tr>
<tr>
<td>(7) Dry deposition</td>
</tr>
</tbody>
</table>
the sensitivity (for a particular day of the year) and emissions matrices, as indicated in equation (2.1). This process, which is computationally inexpensive compared to a complete forward model simulation, allows for the rapid calculation of the atmospheric impacts associated with each flight.

3. Results

This section presents the results from the adjoint sensitivity simulations using the cost function definition in equation (2.2) and the chemical pathway analysis. A forward model analysis was performed with and without aircraft emissions to compare GEOS-Chem with previous aviation NOx studies. GEOS-Chem predicts an annually averaged O3 perturbation of 0.8 DU as compared to 0.9 DU estimated by Kohler et al (2008). Using the GEOS-Chem adjoint-calculated ozone sensitivities multiplied by total aviation NOx emissions results in an annually averaged O3 perturbation that is 10% lower than the forward model result, consistent with the weak nonlinearity found in previous studies.

3.1. Sensitivity of ozone burden to aircraft emissions

From the GEOS-Chem adjoint model, the sensitivity of total tropospheric O3 to NOx emissions is calculated. Figure 1 shows the average effect of 1 kg of aircraft NOx emitted as a function of time of year on the annual average tropospheric O3 burden in kg (black). This was computed by taking the aviation NOx emissions-weighted average of the sensitivity matrix for each hour of the year (then averaging over one year). The results show that aviation NOx emissions in October cause 40% more annually averaged tropospheric O3 than emissions in April. Stevenson et al (2004) also showed a peak ozone perturbation given an aircraft NOx perturbation in October.

Figure 2 shows the sensitivity of annually averaged tropospheric O3 to NOx emissions at cruise altitudes (9–12 km average), where the sensitivity has been averaged over a year. The peak sensitivity is over the Pacific at 4°S, 170°E (~1000 km northeast of the Solomon Islands). In this location an emission of 1 kg of aircraft NOx would result in a 15 kg increase in O3 burden averaged over one year. This is 5.1 times higher than the sensitivity in Europe and 3.7 times higher than North America. This peak in sensitivity in the equatorial region is consistent with recent forward modeling results by Kohler et al (2012). It is also consistent with the results presented in Stevenson and Derwent (2009) which showed peak short-term O3 integrated RF impacts in the remote Pacific region. High sensitivities were associated with NOx-scarce regions (e.g. remote Pacific), as was the case in this analysis. We note from figure 2 that the ‘center of mass’ of the sensitivity is south of the equator, indicative of the weighting between both NOx scarcity and solar zenith angle in ozone sensitivity.

The chemical pathway analysis is used to investigate these temporal and spatial variations. The rate of change of aviation-attributable ozone is approximated as

$$\frac{d(\delta O_3)}{dt} \approx \frac{d(O_3)}{dt} \bigg|_{av} - \frac{d(O_3)}{dt} \bigg|_{w/o \ av},$$

(3.1)

where av denotes the rate of change of O3 with aviation, w/o av denotes the rate of change without aviation, and δO_3 denotes the O3 perturbation attributable to aircraft emissions.

The pathways in figure 3 account for 86% of total net rate of change of aviation-attributable O3, while all the pathways considered in the analysis overestimate net production by 3%. The ‘Production’ pathway is the net O3 production resulting from the direct generation of O3 by O + O2 (where atomic oxygen is generated by way of NO2 photolysis) minus the destruction due to ozone’s reaction with NO (which tracks well with the rate of the HO2 + NO reaction).
Figure 3. Change in aviation-only O_3 production and loss pathways for (a) aviation emissions in October relative to April and (b) cruise altitude NO_x emissions near the Solomon Islands relative to Europe.

Figure 3(a) shows the primary pathways that drive the temporal pattern in the averaged sensitivity when comparing pathway rates in October (peak sensitivity) to April (minimum sensitivity). We note that ‘April’ in figure 3 is an average across the first and last month’s sensitivities given that they are not exactly cyclical (figure 1). It can be seen that while overall production rates in October are higher, chemical and photolytic loss rates are also larger in magnitude, thus the higher production rate is offset ~30% by the higher loss rates, which is chemically dominated by ozone’s reaction with OH. Figure 3(a) shows that while lifetimes in April may be longer (i.e. loss rates are lower), this does not correspond to peak ozone sensitivity to aircraft NO_x emissions. The low loss rates in the winter months, however, do correspond with the peak in the aviation-attributable O_3 perturbation.

Figure 3(b) shows the relative change in each pathway for the location of peak sensitivity in the Pacific near the Solomon Islands relative to the average for Europe. The spatial difference is driven by decreased total production (photolysis) as well as increased O_3 + HO_2 loss, decreased O_3 + OH loss, and increased photolytic loss. This follows from the NO_x-scarce environment in the remote Pacific. Loss due to HO_2 is more prevalent in this region given that NO_x is not present to cycle HO_2 to OH, resulting in a lower O_3+OH loss rate. Given that the overall production rate is also lower (i.e. HO_2 + NO is not as significant), this suggests that O_3 production is NO limited, thus resulting in higher ozone sensitivities in this region. Note that the positive O_3 + HO_2 loss rate indicates a decrease in ozone loss by way of HO_2 when aviation emissions are introduced. In addition, pathway rates are higher in the case of figure 3(b) as only chemistry at cruise altitudes is being considered, where rates are in general higher for aviation-attributable ozone at this altitude range as opposed to production or loss rates in the lower troposphere.

As fully spatially resolved sensitivity data is generated (having been averaged in time), ground-level sensitivities are also compared to previous studies that investigated the impact of changing ground-level anthropogenic NO_x emissions. Our results generally agree with the previous studies, indicating that sensitivities are highest in Southeast Asia while the overall temporal patterns show consistently high sensitivities in the boreal summer and early autumn months and minimum sensitivities in the winter. Naik et al (2005) estimated a factor of 9 difference between the magnitude of sensitivities for Southeast Asia relative to North America for global O_3 due to changes in regional NO_x emissions, whereas a factor of ~2 is found here when calculating spatially averaged sensitivities. The magnitudes of the sensitivity values, however, approximately correspond to the sensitivity values calculated by Fry et al (2012) where ozone sensitivities are on the order of 1 kg O_3/kg NO_x.

3.2. Comparison to ozone production efficiency

The sensitivity results presented in figure 2 also provide an alternative measure to the more common ozone production efficiency (OPE). The concept of OPE was introduced by Liu et al (1987). In this analysis, however, we use the definition presented in Seinfeld and Pandis (2006) and define OPE (in a simplified atmosphere) as

\[
\text{OPE} = \frac{k_{\text{HO}_2+\text{NO}}[\text{HO}_2][\text{NO}]}{k_{\text{NO}_x+\text{OH}}[\text{NO}_x][\text{OH}]}.
\]

(3.2)

Equation (3.2) thus defines OPE to be the ratio of the time rate of O_3 production (approximated by the rate of the additional production of NO_2) to the time rate of NO_3 removal (i.e. HNO_3 production). This definition does not capture the impact of O_3 removal pathways, but rather is a reflection of the likelihood of NO_3 to promote O_3 production rather than exit the ozone cycle through nitric acid production. In addition, OPE is an instantaneous measure of the production tendency of NO_x, where longer-term atmospheric impacts are not captured. The adjoint sensitivity, however, represents the total expected net production of O_3 and its lifetime induced by a small increment in NO_x concentration at a particular time and location in the atmosphere. Figure 1 shows OPE plotted (in blue) versus the previously calculated ozone sensitivity.

The respective peaks of OPE and O_3 sensitivity do not coincide. OPE peaks in the (boreal) summer months where photolysis of NO_2 is most active, preceding the sensitivity.
peak by 2–3 months. When comparing OPE and the ozone sensitivities to the chemical pathway analysis, we see that the OPE tracks closely with the total O$_3$ sensitivities to the chemical pathway analysis, we see that peak by 2–3 months. When comparing OPE and the ozone sensitivities to the chemical pathway analysis, we see that the OPE tracks closely with the total O$_3$ sensitivities to the chemical pathway analysis, we see that peak by 2–3 months. When comparing OPE and the ozone sensitivities to the chemical pathway analysis, we see that the OPE tracks closely with the total O$_3$ sensitivities to the chemical pathway analysis, we see that peak by 2–3 months. When comparing OPE and the ozone sensitivities to the chemical pathway analysis, we see that the OPE tracks closely with the total O$_3$ sensitivities to the chemical pathway analysis, we see that peak by 2–3 months. When comparing OPE and the ozone sensitivities to the chemical pathway analysis, we see that the OPE tracks closely with the total O$_3$ sensitivities to the chemical pathway analysis, we see that peak by 2–3 months. When comparing OPE and the ozone sensitivities to the chemical pathway analysis, we see that the OPE tracks closely with the total O$_3$ sensitivities to the chemical pathway analysis, we see that peak by 2–3 months. When comparing OPE and the ozone sensitivities to the chemical pathway analysis, we see that the OPE tracks closely with the total O$_3$ sensitivities to the chemical pathway analysis, we see that

4. Aviation’s O$_3$ impact by flight

This section presents the results from the application of per flight emissions data to the generated O$_3$ sensitivities. The highest impact flights in terms of ozone are found as well as their marginal impact to the cumulative O$_3$ perturbation.

The impact of aviation NO$_x$ emissions on a per flight basis is calculated through the use of adjoint sensitivities for the total atmospheric ozone burden previously calculated. Results are normalized on three different bases: no normalization, by seat-km, and by fuel burn. The third normalization is also scaled such that the minimum value across all flights is one. We call this quantity the ‘flight ozone factor’ (FOF) and are taken relative to the annually averaged minimum. For this analysis, only aircraft with capacities greater than 70 passengers are considered as the reliability of the fuel burn data for some of the smaller aircraft is unknown. In addition, flights under 200 km are excluded to limit the number of short range movements of large aircraft. This equates to approximately 83,000 unique flights.

Table 2 shows the five highest flights by total atmospheric ozone impact and FOF. For total O$_3$ generated by a flight, it follows that the highest impact flights occur in the geographical area with the largest ozone sensitivities throughout the flight, which are concentrated in Southeast Asia and Australia. These flights also correspond to large aircraft (predominately 777s and 747s), relatively long flights, and thus NO$_x$ production will be relatively large due to the amount of fuel burnt. In addition, all flights, whether ranked by total impact or FOF, have origins or destinations in Australia or New Zealand. Within the top five, however, only one flight appears for both normalizations (Auckland to Seoul). The highest O$_3$ impact flight on a fuel burn-normalized basis results in approximately 157 times more O$_3$ than the lowest impact flight. However, because fuel burn also varies by two orders of magnitude across flights, the highest impact flights result in four orders of magnitude greater O$_3$ production than the lowest impact flights.

Table 2 also shows that the flights with the highest total impact do not necessarily correlate to the flights with the highest impact on a fuel burn basis. Dividing by fuel burn roughly normalizes the flight by distance for a comparably sized aircraft. Thus, flights that remain within the Australia–Southeast Asia area result in large FOFs, while a flight such as Auckland to Los Angeles generates a lower FOF since a portion of the flight is spent outside this high sensitivity zone.

Table 3 shows the annually averaged O$_3$ impact for the top five flights normalized by seat-km. Results are dominated by large aircraft flying short distances such as from Mauritius to Saint Denis. Spatially, the majority of these flights occur in South America or Southeast Asia, although many of the flights from Mauritius to Saint Denis (islands near Madagascar) rank highly using this normalization.

We find that the top (500, 5000, 50,000) unique flights ranked by O$_3$ impact create (11.3, 47.7, 93.7)% of the total O$_3$ impact while constituting (5, 36, 91)% of the seat-km and
(0.6, 6, 60)% of the unique flights. Thus the first (500, 5000, 50,000) unique flights are (18.8, 7.8, 1.6) times as effective per seat-km at creating O\textsubscript{3} than the average flight per seat-km.

5. Discussion

Previously, perturbation studies have been used to investigate the impact of aviation emissions in different locations and times, particularly with respect to the impact of NO\textsubscript{x} emissions on tropospheric ozone burdens. These studies have been largely restricted to bulk regions or particular injection times due to limitations inherent in forward sensitivity analyses in this context. In this study, an adjoint approach is used to determine the full four-dimensional sensitivity of tropospheric ozone to NO\textsubscript{x} emissions using the GEOS-Chem adjoint model. Using this approach per flight impacts were determined.

While ozone production related to aviation peaks in the boreal summer, aviation NO\textsubscript{x} emissions in the autumn are most effective at increasing the annual averaged tropospheric O\textsubscript{3} burden. This occurs at approximately the midpoint between the peak in ozone production and the peak in ozone lifetime associated with aviation NO\textsubscript{x} emissions. On a spatial basis, cruise altitude NO\textsubscript{x} emissions near the Solomon Islands would contribute 5.1 times more to the annual averaged tropospheric O\textsubscript{3} burden than emissions over Europe. More importantly, sensitivities in Southeast Asia—where aviation is growing significantly faster than the global average—are more than double those in North America and Europe. This implies that the marginal impact of aviation growth in future will be greater than the historical growth that has been concentrated in North America and Europe.

Our analysis showed that the highest total ozone perturbations were caused by individual flights with origins and destinations in Australia or New Zealand, which was also true if results were normalized by total fuel burn. Using this metric, the most impactful flight (of the 83,000 unique flights considered) creates 157 times more ozone per kg of fuel burned than the minimum. These flights also correspond to areas of high ozone sensitivity to NO\textsubscript{x} emissions and flight paths largely contained within high sensitivity regions. We also find that a disproportionate fraction of the direct ozone impact from aviation can be attributed to a relatively small fraction of flights. The strength of the spatial and temporal variability in ozone production due to aviation NO\textsubscript{x} emissions raises the possibility of time and location dependent mitigation measures, which may be facilitated by the four-dimensional sensitivity data created in this analysis. We note other atmospheric impacts associated with aircraft emissions also need to be considered and will be the subject of future work. As Stevenson and Derwent (2009) showed, the longer-term CH\textsubscript{4} climate response may outweigh the near-term O\textsubscript{3} perturbation due to aircraft emissions.

Acknowledgments

The US Federal aviation administration funded part of this work. We thank Christopher J Sequeira for his management of the project. Any findings are those of the authors and may not represent the views of the FAA. CKG was also supported by the John and Irene M Goldsmith scholarship at the MIT Department of Aeronautics and Astronautics.

References

Federal Aviation Administration 2011 Destination 2025 (www.faa.gov/about/plans/reports/media/Destination2025.pdf)
Fry M M et al 2012 The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing J. Geophys. Res. 117 D07306
Henze D K, Hakami A and Seinfeld J H 2007 Development of the adjoint of GEOS-Chem Atmos. Chem. Phys. 7 2413–33
Kohler M O, Radel G, Shine K P, Rogers H L and Pyle J A 2012 Latitudinal variation of the effect of aviation NO\textsubscript{x} emissions on atmospheric ozone and methane and related climate metrics Atmos. Environ. 64 1–9
Lee D S et al 2010 Transport impacts on atmosphere and climate: aviation Atmos. Environ. 44 4678–734
Mahashabde A et al 2011 Assessing the environmental impacts of aircraft noise and emissions Prog. Aerosp. Sci. 47 15–52
Naik V, Mauzerall D, Horowitz L, Schwarzkopf M D, Ramaswamy V and Oppenheimer M 2005 Net radiative
forcing due to changes in regional emissions of tropospheric ozone precursors J. Geophys. Res. 110 D24306
Pope C A 2002 Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution J. Am. Med. Assoc. 287 1132–41
Seinfeld JH and Pandis S N 2006 Atmospheric Chemistry and Physics (Hoboken, NJ: Wiley)
Stevenson D S and Derwent R G 2009 Does the location of aircraft nitrogen oxide emissions affect their climate impact? Geophys. Res. Lett. 36 L7810
van Donkelaar A et al 2008 Analysis of aircraft and satellite measurements from the intercontinental chemical transport experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada Atmos. Chem. Phys. 8 2999–3014