Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/es301904d</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Dec 18 23:36:39 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/82191</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Long-range atmospheric transport of polycyclic aromatic hydrocarbons: A global 3-D model analysis including evaluation of Arctic sources

Carey L. Friedman§* and Noelle E. Selin†

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA

*Corresponding author e-mail: clf@mit.edu.

§Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA

†Engineering Systems Division and Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
Spitsbergen, Norway

\[r = 0.70 \]

BaP Concentration (ng m\(^{-3}\))

Day of year, 2007

PAH Global Budget

Oxidized PAH

Emissions

BC particulate PAH

Gas phase PAH

OC particulate PAH

Wet deposition

Dry deposition

Wet deposition

Dry deposition

Dry deposition

Wet deposition

Dry deposition

PHE
PYR
BaP
ABSTRACT

We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model’s ability to simulate PAHs with different volatilities, we conduct analyses for phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). GEOS-Chem captures observed seasonal trends with no statistically significant difference between simulated and measured mean annual concentrations. GEOS-Chem also captures variability in observed concentrations at nonurban sites (r = 0.64, 0.72, and 0.74, for PHE, PYR, and BaP). Sensitivity simulations suggest snow/ice scavenging is important for gas-phase PAHs, and on-particle oxidation and temperature-dependency of gas-particle partitioning have greater effects on transport than irreversible partitioning or increased particle concentrations. GEOS-Chem estimates mean atmospheric lifetimes of <1 day for all three PAHs. Though corresponding half-lives are lower than the 2-day screening criterion for international policy action, we simulate concentrations at the high-Arctic station of Spitsbergen within four times observed concentrations with strong correlation (r = 0.70, 0.68, and 0.70 for PHE, PYR, and BaP). European and Russian emissions combined account for ~80% of episodic high-concentration events at Spitsbergen.

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are contaminants of concern because of their detrimental health effects. PAHs travel through the atmosphere across national boundaries\(^1\) and are found in Arctic regions far from sources\(^2,3\) where they dominate invertebrate and fish persistent organic pollutant (POP) tissue burdens; indeed, PAH concentrations are at least 100× higher than other legacy POPs\(^4\). PAHs are regulated internationally as POPs by the United
Nations Economic Commission for Europe’s (UNECE’s) Convention on Long-Range Transboundary Air Pollution (CLRTAP), but there remains uncertainty surrounding pathways by which they reach remote regions, especially with respect to gas-particle partitioning and oxidation. Here we use the chemical transport model (CTM) GEOS-Chem to investigate the influence of uncertain PAH properties on atmospheric transport and source-receptor relationships globally.

Existing PAH models have over- or under-predicted observed concentrations by ~2× (e.g., in Europe) to more than 10× (e.g., at Arctic locations). Previous investigations of PAH/POP atmospheric transport have relied primarily on two model types: multimedia screening/assessment tools, and regional CTMs. Multimedia models focus on pollutant chemical properties while the larger environment has fixed characteristics, and are commonly used to identify a POP’s potential for environmental persistence or long-range transport.

Regional CTMs, by contrast, consider dynamic atmospheric processes in addition to pollutant properties and have been used to investigate PAH distribution over Europe, cross-Pacific sources to western US receptors, sources to the Arctic, and transboundary outflow.

Lammel et al. used a general circulation model (GCM) to investigate global transport of anthracene, fluoranthene, and benzo[a]pyrene (BaP). Their simulations demonstrated that gas-particle partitioning has a substantial effect on long-range transport, with a parameterization assuming absorption into organic matter and adsorption to black carbon (BC) agreeing best with remote observations.

Our use of GEOS-Chem to simulate PAHs makes several important contributions to POPs modeling. We use a finer spatial resolution (4°×5°) than previous global POP models, and thus can conduct a detailed model performance evaluation at multiple sites. The
representation of atmospheric oxidants, partitioning, and deposition at this scale allow us to
examine in detail their influence on PAH behavior, similar to studies with regional models5,13
but providing a global perspective on transport. Additionally, because the model is driven by
assimilated meteorology21, we can assess the influence of episodic transport to remote locations.

Here we describe model development, compare results to observations, and assess the
importance of oxidation, gas-particle partitioning, and deposition to the global atmospheric
lifetimes of phenanthrene (PHE), pyrene (PYR), and BaP (three-, four-, and five-benzene ring
PAHs, respectively). These PAHs were chosen based on variation in expected fraction associated
with particles (with PHE primarily in the gas phase, BaP primarily in the particulate phase, and
PYR in both phases), and because of potential toxicity22,23. We then use the model to investigate
the effect on global concentrations and particulate fraction of: i) temperature-dependent
partitioning; ii) non-reversible partitioning; iii) increased particle concentrations; iv) variable
gas-phase oxidation, and; v) on-particle oxidation. Additionally, we simulate PAHs in the remote
Arctic and attribute concentrations to different source regions.

\textbf{METHODS}

\textbf{General model description}

We use GEOS-Chem version 8-03-0221 (http://www.geos-chem.org/) to simulate gas
phase, organic carbon (OC)-bound particulate, and BC-bound particulate PAH global transport
and chemistry. The model is driven by GEOS-5 assimilated meteorology from the NASA
Goddard Earth Observing System (GEOS) with 6-hour temporal resolution, 47 vertical levels,
and 0.5°×0.667° horizontal resolution, re-gridded to 4°×5° for input to the PAH simulation.
Simulations are conducted for meteorological years 2004-2009, with 2004 used for initialization.
Emissions

We use the 2004 global atmospheric PAH emission inventory from Zhang and Tao24. Total (gas + particulate) annual emissions were 6.0×10^4 Mg, 2.1×10^4 Mg, and 4.1×10^3 Mg for PHE, PYR, and BaP, respectively, with no seasonal variation. Biofuel is the dominant source (57%) and Chinese emissions predominate (27%, 30%, and 37% of total for PHE, PYR, and BaP, respectively). Emissions are re-gridded from $1^\circ \times 1^\circ$ to $4^\circ \times 5^\circ$ horizontal resolution for inclusion in the model. PAHs are emitted as total concentrations and then distributed between the gas and particle phase throughout the planetary boundary layer by considering ambient OC/BC concentrations. We neglect re-emissions from surfaces, as monitoring data suggests PAH concentrations in the ocean surface and atmosphere are unconnected25, and quantification of fluxes from has been limited. However, as recent studies suggest PAH re-emission from soils may contribute to atmospheric concentrations26, inclusion of secondary sources is a priority for further model development.

Gas-particle partitioning

An OC absorption model, in which a compound’s octanol – air partition coefficient (K_{OA}) describes its sorption into the particle organic fraction27,28, is often used to model PAH/POP gas-particle partitioning3,29. PAHs have also been shown to strongly adhere to particulate BC30. We implement a dual OC absorption and BC adsorption model30 using both K_{OA}31 and a BC – air partition coefficient (K_{BC})32 to describe PAH partitioning in/onto OC and BC aerosols, respectively. We incorporate K_{OA} temperature dependence into the default model according the van’t Hoff relationship (see Supporting Information (SI) for details).
The temperature dependency of K_{OA} is well established, but that of K_{BC} as a surface process is less certain, particularly as we use an empirical K_{BC} considering BC volume rather than surface area. Therefore, in our standard model, K_{BC} does not vary with temperature.

However, as the temperature dependence of PAH surface adsorption to soot has been shown to follow the van’t Hoff relationship33, we conduct sensitivity analyses where K_{BC} varies according to the van’t Hoff equation (Equation S1 and Table S1).

Monthly mean hydrophobic OC and BC concentrations for all years are from GEOS-Chem aerosol simulations for 2008 using emissions from Bond et al.34 scaled following Wang et al.35 (see SI for details). GEOS-Chem assumes 50% of OC and 80% of BC emissions are hydrophobic with lifetimes of 1.2 days before conversion to hydrophilic OC and BC36. Empirical and modeling observations suggest this conversion rate should vary regionally and may be too fast37, 38. Therefore, we also conduct an increased aerosol sensitivity analysis with 2× OC and BC concentrations.

Oxidation

We incorporate PAH loss through reaction with hydroxyl radical (OH). We use an empirically-derived rate constant (k_{OH}) for PHE39, with sensitivity simulations conducted using a k_{OH} calculated with the U.S. EPA’s AOPWIN software40. PYR and BaP k_{OHs} are calculated with AOPWIN. Standard simulations have temperature-independent k_{OHs}, but a PHE sensitivity analysis was conducted with temperature dependency (see SI text and Table S1).

The importance of on-particle BaP oxidation by ozone (O_3), the PAH for which O_3 reaction rate constants (k_{O3}) have been most widely determined, was tested with three parameterizations (see SI for details): i) k_{O3} for BaP on soot particles from Pöschl et al.41; ii) k_{O3}
for BaP dissolved in octanol from Kahan et al.42, and; iii) k_{O_3} for BaP on wet azaelic acid aerosols from Kwamena et al.43. On-particle oxidation schemes were tested for BC-phase BaP only (for consistency with the Pöschl scheme which only applies to soot) and were not included in standard simulations.

Deposition

GEOS-Chem wet deposition includes rainout and washout from large-scale and convective precipitation and scavenging in convective updrafts44 and is compatible with GEOS-Chem version 9-02-01. Wet deposition is applied to both gas and particulate PAHs. Gas-phase PAHs are scavenged into liquid water according to the temperature-dependent air-water partition coefficient (K_{AW}31) and retained at 100% efficiency above 268 K and 0% otherwise. However, as cold-temperature scavenging is likely an important process45,46, we also investigate the addition of gas-phase PHE scavenging by ice (i.e., precipitation \leq 268 K) using a PHE snow scavenging ratio from Wania et al.45. Particle-phase PAHs are scavenged as hydrophobic OC and BC aerosols44 in the default model, with a hydrophilic OC and BC scavenging efficiency tested in a sensitivity analysis.

PAH dry deposition velocities are calculated following a resistance-in-series scheme from Wesely et al.47 with improvements by Wang et al.48. We adjust this scheme by scaling cuticular resistances with K_{OA} to account for lipophilic uptake of gas-phase PAHs in waxy leaf cuticles49,50. Uptake of particulate PAHs into plant material is not considered, as uptake of gaseous PAHs is the dominant pathway51.

Source-receptor relationships
We assess the model’s ability to reproduce episodic transport to remote sites by simulating daily concentrations for 2005-2009 at the Spitsbergen, Norway EMEP Arctic monitoring station (80N, 12E). We investigate the contribution of various source regions by removing emissions from source regions designated by the CLRTAP (Europe: 10W–50E, 25N–65N; North America: 125W–60W, 15N–55N; East Asia: 95E–160E, 15N–50N; South Asia: 50E–95E, 5N–35N) and re-running the 2007 time series. Though not a CLRTAP source region, we also investigate the impact of Russian emissions (50E–180E, 50N–75N) on Spitsbergen.

RESULTS AND DISCUSSION

Annual mean concentrations

Figure 1 shows global simulated annual mean total (gas + particulate) PHE, PYR, and BaP concentrations for 2005-2009 compared with observations. All observations are from land-based northern hemisphere sites and were collected using high-volume air samplers. Table 1 shows mean annual total concentrations observed and simulated at each location. Also shown are total observed and simulated means from all sites, from nonurban locations only, and from Arctic locations only.

The GEOS-Chem simulation successfully reproduces the five-year mean concentrations overall and captures variability among nonurban sites. Differences between mean observed and simulated concentrations from all sites (n=19 for PHE and PYR and n=20 for BaP after averaging observations within the same grid box) are not statistically significant at $\alpha=0.05$ (p=0.10, 0.17, and 0.41 for PHE, PYR, and BaP, respectively), though high variability in observed concentrations contributes to this indifference. When only nonurban sites are considered (n=15 for PHE and PYR, n=16 for BaP), discrepancies between observed and
simulated concentrations decrease for all three compounds, but because variance also decreases, differences become statistically significant for PYR and BaP (Table 1; p=0.27, 0.04, and <0.01 for PHE, PYR, and BaP, respectively). However, there is a significant correlation (r) between simulated and measured concentrations at nonurban sites (0.64 (PHE), 0.72 (PYR), and 0.74 (BaP), with p<0.01 for all three; Figure S1). Mean simulated Arctic concentrations generally match observations well, though too few observations are available for statistical analyses.

We compared mean annual concentrations to ship-based measurements from the Atlantic (data not shown). Simulated concentrations were generally >10× lower than measured, likely because of (i) omission of secondary emissions from oceans, (ii) interference in cruise-based measurements from ship stack vapors, which can lead to strong overestimates, or (iii) lack of seasonality in emissions.

Seasonal variation

We compare seasonal variation in simulated and observed total PAH concentrations at all nonurban mid-latitude (NUML) and Arctic sites from Table 1 to assess the influence of natural seasonal processes (Figures 2 and 3, and Figures S2 and S3). For all three PAHs, mean observed concentrations over NUML and Arctic sites are significantly higher in winter than in summer at most locations (p < 0.005), reflecting the influence of oxidative loss, gas-particle partitioning, and seasonal variation in emissions. GEOS-Chem captures this seasonal variability (p <<0.001) despite using a constant emission rate.

At NUML sites (Figure 2), GEOS-Chem simulates monthly mean PHE and PYR within one standard deviation of measured means, but overestimates BaP. GEOS-Chem systematically
overestimates winter concentrations for all three PAHs. We explore the influence of oxidation on this overestimate below.

Arctic concentrations exhibit stronger seasonal variation than NUML sites (Figure 3), reflecting either increased seasonal variation in oxidation or transport, or the effect of springtime Arctic haze\(^5^6\). Wintertime concentrations are ~3, 6, and 8\(\times\) higher than summer in observations.

GEOS-Chem overestimates winter PHE concentrations by ~4\(\times\), and underestimates summer concentrations. The model exhibits a smaller overestimate of Arctic winter PYR, and no bias in BaP, suggesting it does not capture a gas-phase natural process or underestimates the particulate fraction \((f_p, \text{equal to the sum of OC- and BC-phase PAH divided by the sum of the gas-, OC-, and BC-phases, discussed further below})\), as the bias decreases with increasing particle partitioning. To test whether snow/ice scavenging is responsible for the discrepancy, we conducted a simulation including wet scavenging of gas-phase PHE at temperatures below 268 K. Results for Arctic stations (Figure 3a) suggest cold-temperature scavenging can reduce winter simulated gas-phase concentrations by up to 30\%, but will not account for the full disagreement. Daly and Wania\(^4^6\) suggested scavenging by the snow pack on land may contribute to reduced atmospheric concentrations; this could further reduce Arctic wintertime PHE. A wide range of observed particle-phase snow scavenging ratios\(^4^6\) suggests snow could also have a non-negligible effect on BaP concentrations.

In contrast to NUML and Arctic sites, Great Lakes (USA) and urban locations show a maximum in summer, particularly for PHE, which GEOS-Chem does not capture (Figure S4). The summer maximum may be due to volatilization of higher vapor pressure PAHs from polluted land/water surfaces during warmer temperatures, a process not included in our
simulation. Given that the model captures observed NUML seasonal trends without including emissions variability, the trends are likely due primarily to natural processes.

Global budget

Figure S5 shows mean annual global budgets of gas-, OC-, and BC-phase PHE, PYR, and BaP in GEOS-Chem for 2005-2009, and Table S2 shows simulated lifetimes with respect to different removal processes, the overall lifetime of each PAH in each phase, and total (gas + particulate) lifetimes. Overall lifetimes are 4, 3, and 6 hrs and the mean f_Ps are 0.002, 0.02, and 0.93, for PHE, PYR, and BaP respectively. Overall lifetimes are shorter than those predicted by other modeling studies, especially for BaP, which is almost completely in the particle phase; e.g., Lammel et al.\(^{19}\) report a BaP lifetime of 48 hours.

We find that as PAH molecular weight (and f_P) increases, overall lifetimes stay fairly consistent. Similar lifetimes result from three concurrent processes: (i) decreasing gas-phase lifetimes balancing an increasing f_P; (ii) low variability between OC and BC deposition lifetimes for different PAHs; and, (iii) exchange between the gas and OC/BC phases dominating over deposition with consistent net exchange across PAHs (Figure S5). Gas-phase lifetimes with respect to oxidation are ~4, 3, and 0.4 hrs for PHE, PYR, and BaP respectively. The PHE oxidation lifetime is in the same range as that found by Halsall et al.\(^{3}\) for summertime transport from the UK to the Arctic. Despite the same k_OHS, BaP oxidation lifetime is ~10× shorter than that of PYR. Spatial and temporal differences in gas phase prevalence account for this: BaP exists as a gas only in warmer regions and seasons where OH concentrations tend to be higher. Gas-phase lifetimes with respect to wet and dry deposition decrease with increasing PAH molecular weight, owing to decreasing K_{AWS} and increasing K_{OAS}, respectively. OC- and BC-
phase lifetimes do not vary substantially between PAHs, so increases in the particulate phase result in greater deposition. Despite a shorter lifetime and a similar gas-particle partitioning parameterization, GEOS-Chem predicts higher BaP concentrations in remote regions than the global model of Lammel et al.19 Greater BaP emissions and potentially longer aerosol lifetimes are likely causes of the discrepancy.

Gas-particle partitioning

To evaluate the effect of gas-particle partitioning on global concentrations, we compare monthly mean simulated PAH f_Ps to those from the Integrated Atmospheric Deposition Network (IADN; \textbf{Table 1}), and conduct sensitivity simulations using different partitioning parameterizations (\textbf{Figure 4}). On average, our standard model simulates observed f_P for BaP well (0.93 annual mean, compared with 0.90 in measurements), but underpredicts observed f_P for PHE and PYR by \sim10x. The IADN, covering sites near the U.S. Great Lakes, provides the most consistent f_P data, but comparisons should be interpreted with caution because (i) data from 2005 onward have not yet undergone quality assurance/control procedures (M. Venier, Indiana University, personal communication), and (ii) half of IADN’s sites are urban, and gas-particle partitioning may depend strongly on the distribution upon emission. Though f_P has been measured at high latitude stations, we do not consider them here because long sampling periods with high flow rates can cause biases toward the gas phase (H. Hung, Environment Canada, personal communication).

We examine three hypotheses for low simulated PHE and PYR f_P and conduct sensitivity simulations to test the effect of including these processes on both f_P and total concentrations.

First, partitioning between gas and particles is likely not 100% reversible: Galarneau et al.57 and
Arp et al.58 observed \(f_P \)'s orders of magnitude higher than predicted and attributed them to a fraction of particulate PAH that is analytically extractable but non-exchangeable with the gas phase. Second, simulated OC and BC concentrations could be too low, or the hydrophobic to hydrophilic folding time could be too fast37, 38. Third, sorption to BC is likely temperature-dependent33, 59.

To test the effect of irreversible partitioning, we assume 30\% of BC-associated PAH becomes trapped within the particle volume while 70\% is available for surficial reversible partitioning (given BC’s high surface area41). This results in a small increase in the mean \(f_P \) (\textbf{Figure 4}), not enough to match measured \(f_P \), a minor increase in the total concentrations (\textbf{Figure 2c}), and negligible increases in total atmospheric burdens.

To test the influence of increased OC and BC, we double OC and BC concentrations globally. This increases \(f_P \) only slightly (\textbf{Figure 4}), and has a negligible effect on NUML concentrations for PHE and PYR (data not shown). BaP NUML concentrations increase on average by 1.1\(\times \) (\textbf{Figure 2c}), amplifying their positive bias, and Arctic BaP concentrations increase by 1.5\(\times \) (\textbf{Figure 3c}). Increasing OC and BC concentrations does not substantially affect the overall lifetime or atmospheric burdens of PHE or PYR, but increases BaP’s lifetime by \(\sim 1 \) hour and global burden by 1.1\(\times \).

To test the effect of temperature-dependent BC partitioning, we include a \(K_{BC} \) that follows the van’t Hoff equation. This increases \(f_P \) for all compounds such that PHE and PYR simulated \(f_P \) are now within the range of observed \(f_P \) (\textbf{Figure 4}). PHE and PYR \(f_P \) increase by an order of magnitude but BaP increases by only 1.1\(\times \). Making \(K_{BC} \) temperature-dependent does not affect total NUML concentrations of PHE (data not shown), but slightly increases those of PYR (by 1.1\(\times \)) and BaP (by 1.3\(\times \); \textbf{Figure 2b and 2c}), increasing their positive bias. It also increases
PYR and BaP concentrations in the Arctic (by 1.1× and 4.9×, respectively; Figure 3b and 3c), and the atmospheric burden of each (by 1.1× and 1.3×, respectively). We conclude that temperature-dependent BC partitioning is the most likely explanation for the \(f_p \) underprediction. This suggests BC temperature-dependent partitioning may be reasonably approximated by considering BC volume rather than surface area.

Oxidation

We test several different oxidation schemes for individual PAHs: (i) temperature dependence for PHE; (ii) the magnitude of \(k_\text{OH} \) for PHE; and (iii) on-particle oxidation for BaP.

Including temperature dependence in \(k_\text{OH} \) for PHE does not affect mean NUML concentrations (data not shown), consistent with the near-zero activation energy for PHE\(^{39}\). Using the AOPWIN PHE \(k_\text{OH} \), which is ~half our default \(k_\text{OH} \), increases average seasonal concentrations and the atmospheric burden (both by 1.2×), with a stronger effect in winter (Figure 2a). The AOPWIN \(k_\text{OH} \) also increases mean Arctic concentrations (by 1.5×; Figure 3a), decreasing measurement-model agreement. Results suggest \(k_\text{OH} \) may be underestimated and/or other oxidants play a non-negligible role in gas-phase PAH removal. Both \(k_\text{OH} \) sensitivity analyses affect PHE \(f_p \) by less than 0.1% (data not shown).

We test the three different parameterizations for reaction of \(O_3 \) with on-particle BaP described in the Methods/SI. The effect on total BaP concentrations depends strongly on the \(O_3 \) reaction scheme used. Experimental studies have shown that PAHs can be rapidly oxidized by \(O_3 \) at the particle surface\(^{41-43}\) but models often omit this process. Matthias et al.\(^5\) included \(O_3 \) oxidation of BaP in European regional modeling experiments and found that it decreased simulated concentrations by 5×, bringing simulated and measured concentrations closer. When
we apply the Pöschl scheme, NUML and Arctic BaP concentrations are reduced \(>30\times\) and the
total atmospheric burden by \(18\times\), causing large underestimates of observed concentrations
(Figures 2c and 3c). The Kahan scheme does not substantially reduce concentrations for either
the NUML stations or Arctic stations, and reduces the atmospheric burden by only 10\%. At
NUML sites, the Kwamena scheme reduces average concentrations by \(5\times\) (Figure 2c),
improving the match to observations, similar to Matthias et al.\(^5\), who also used the Kwamena
scheme. The total atmospheric burden is also reduced by \(5\times\). In the Arctic, however,
concentrations are reduced by \(11\times\), weakening the match to observations and reducing seasonal
variation. In general, the Kwamena scheme brings observed and simulated concentrations closest
together, and has little effect on the BaP \(f_p\), which is already well-simulated. We conclude that
on-particle oxidation has a substantial effect on BaP concentrations, and that a rate intermediate
to the Kahan and Kwamena schemes best matches existing data constraints. There remains
considerable uncertainty in on-particle oxidation rates, which depend on particle content and
size, relative humidity, and ambient temperature.

Deposition

Deposition flux measurements are available at few sites, and all are in northern Europe
(n=3, Table 1). We compare mean simulated seasonal and annual combined wet and dry
deposition fluxes to observed (ng m\(^{-2}\) day\(^{-1}\); Figures S6–S8). Similar to other models\(^5\), we
overestimate deposition at these sites by \(~5.6\times\), with better agreement in the winter for PHE and
PYR. Some of this difference may be explained by overprediction of concentrations at those
sites, which are all in the same region, or by not accounting for emissions seasonality.
Additionally, we may underestimate oxidative losses as sensitivity analyses indicated. The
limited number of sites, however, provide few constraints; additional deposition measurements
would improve our ability to constrain the relative magnitudes of emission, deposition, and
oxidation.

Source-receptor relationships for remote regions

To assess the model’s ability to reproduce episodic transport to remote sites, we simulate
daily concentrations for 2005-2009 at Spitsbergen, Norway, the Arctic station with the shortest
measurement integration time. For 2005 and 2007-2009, correlation ranges are r=0.53-0.76
(PHE), 0.40-0.68 (PYR), and 0.40-0.70 (BaP). Figure 5 shows results for 2007. The model
captures wintertime variability for all three compounds and reproduces several episodic transport
events. While summer concentrations appear underestimated, simulated values are below the
quantification limit (W. Aas, European Monitoring and Evaluation Programme, personal
communication) and should be interpreted with caution. The model overestimates winter PHE
concentrations by ~4×, is nearly 1:1 with measured PYR, and underestimates BaP by ~2×. All
other years show similar biases (Figures S9-S12), except 2006, during which anomalously high
PYR and BaP concentrations were measured in mid-May; the model does not capture these,
which are likely due to local sources, regional fires60, or interannual variability in emissions. In
general, however, it is unlikely Spitsbergen concentrations have a strong local signal, given the
remoteness of the station.61 We also conduct Spitsbergen simulations at a finer spatial resolution
(2°×2.5°) to investigate effects on Arctic transport (Figures S11 and S12); higher concentrations
suggest coarser resolutions may average PAH plumes.

We assess the contribution of different regions to Spitsbergen PAH concentrations by
removing emissions from source regions designated by the CLRTAP and re-running the 2007
time series. European emissions contributed the most (51%, 47%, and 70% for PHE, PYR, and BaP, respectively) followed by Russian (24%, 29%, and 13%) and North American (15%, 13%, and 9%). East and South Asian emissions combined contributed 1% (PYR) to 8% (BaP). Most episodic high concentration events can be attributed to European sources (Figure 5).

Though we overestimate mean Spitsbergen BaP by ~2x, this bias compares well to previous efforts to simulate BaP at the same station. Sehili and Lammel\(^6\) modeled the contribution of European and Russian BaP emissions for the years 1994-2004 with a GCM and predicted concentrations as much as 100x less than observed, potentially due to low BaP emissions. Lammel et al.\(^19\) considered global BaP emissions using the same GCM to simulate concentrations at Spitsbergen; this improved agreement with mean concentrations, but winter concentrations were still ~100x lower than observed.

Recommendations for policy and measurement constraints

GEOS-Chem simulates mean global concentrations that are not statistically different from measured, and captures variability in nonurban observations. PAHs have shorter lifetimes in GEOS-Chem than in other models\(^3,19\) with little variation between different PAHs. Discrepancies likely arise from differences in model resolutions and averaging across seasons. Additionally, emissions from wildfires may contribute to longer PAH lifetimes than accounted for here, since smoke plumes can rise into the free troposphere where constituents are less susceptible to deposition.\(^62,63\) The uncertainty associated with wildfire plumes is likely less than that from lack of seasonality in all emissions sources, however, given that total PAH concentrations vary orders of magnitude between seasons\(^15,64\).
Lifetimes presented here are >10× less than the threshold for inclusion as a POP under the CLRTAP protocol\(^6\). Successful simulation of Arctic concentrations, however, suggests model results have a role in hemispheric policy discussions, particularly with respect to prioritizing emissions reductions. Use of the model for more localized policy analysis would benefit from greater spatial and temporal resolution of PAH processes.

The model holds promise for investigating the transport of other semivolatile POPs with similar behaviors, especially when evaluating response of transport to variable particle concentrations, temperature, and oxidizing species. However, there remain substantial uncertainties in physicochemical properties that could have significant impacts on results. Though we find strong dependence of PAH long-range transport on the temperature sensitivity of partitioning and on-particle oxidation, enthalpies of phase exchange and reaction rate constants that govern these processes have not been extensively defined. Combined with international policy interest in aerosols, this suggests the need for improved characterization of these properties. Our modeling highlights areas where land-atmosphere exchange and snow scavenging in the atmosphere and by the snowpack play important roles, but few data exist to constrain efficiencies of these processes. Additionally, overestimates of deposition suggest a need for alternative sinks in the model and/or additional observational constraints. Finally, measurement networks in Asia, the southern hemisphere, and the Arctic are needed to improve our ability to evaluate PAH fate globally.

ACKNOWLEDGMENTS

This research was supported by the MIT James H. Ferry Fund for Innovation in Research Education, the MIT Leading Technology and Policy Initiative, and the U.S. National Science
Foundation Atmospheric Chemistry program (grant #1053648). We thank MIT undergraduates Abigail Koss and Anthony Longboat, the MIT John Reed Undergraduate Research Opportunity fund, QiaoQiao Wang (Harvard University) for aerosol simulations, and Marta Venier and Ronald Hites (Indiana University) and Hayley Hung and the Northern Contaminants Program (Environment Canada) for observational data.

Supporting Information Available

Supporting information includes details related to physicochemical constants, oxidation, temperature dependence of gas-particle partitioning, deposition, global budgets, urban concentrations, and Spitsbergen simulations for years 2005, 2006, 2008, and 2009. This material is available free of charge via the Internet at http://pubs.acs.org.
Figure 1. Average PHE (a), PYR (b), and BaP (c) total (gas + particulate) simulated concentrations in surface air from 2005-2009 (background). Land-based observations from Table 1 are shown with circles. Observations from long-term monitoring stations are inter-annual means for the years shown in Table 1.
Figure 2. Nonurban mid-latitude mean total concentration (gas + particle) seasonal variation from sites/years listed in Table 1 (observed; solid black line) and for simulated years 2005-2009 (simulated; dotted black line) for (a) PHE, (b) PYR, and (c) BaP. Error bars are ± one standard deviation of monthly means across sites. Colored lines represent results from sensitivity analyses.
Figure 3. Arctic mean total concentration (gas + particle) seasonal variation from sites/years listed in Table 1 (observed) and for simulated years 2005-2009 (simulated) for (a) PHE, (b) PYR, and (c) BaP. Error bars are ± one standard deviation of monthly means across sites. Colored lines represent results from sensitivity analyses.
Figure 4. Mean particulate fraction measured (solid black line) at IADN sites over years 2004-2008 and mean simulated particulate fraction (dotted black line) at same sites for years 2005-2009. Error bars represent one standard deviation of monthly mean particulate fraction across sites. Colored lines represent results from sensitivity analyses.
Figure 5. 2007 simulated and measured total a) PHE, b) PYR, and c) BaP at Spitsbergen, Norway. PAHs were measured over three-day periods weekly. Also shown are simulated concentrations when European and Russian emissions are removed from the simulation.
TABLES

<table>
<thead>
<tr>
<th>Lat</th>
<th>Long</th>
<th>Location Name</th>
<th>Observation years</th>
<th>Ref</th>
<th>PHE Observed</th>
<th>PHE Simulated</th>
<th>PYR Observed</th>
<th>PYR Simulated</th>
<th>BaP Observed</th>
<th>BaP Simulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>-62</td>
<td>Alert, Canada</td>
<td>2004-2008</td>
<td>1</td>
<td>0.065</td>
<td>0.138</td>
<td>0.025</td>
<td>0.016</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>80</td>
<td>12</td>
<td>Spitsbergen/Zeppelinfjell, Norway</td>
<td>2004-2009</td>
<td>2</td>
<td>0.063</td>
<td>0.260</td>
<td>0.018</td>
<td>0.035</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>68</td>
<td>24</td>
<td>Pallas/Matorova, FinlandΩ</td>
<td>2004-2007</td>
<td>2</td>
<td>0.405</td>
<td>0.688</td>
<td>0.079</td>
<td>0.118</td>
<td>0.020</td>
<td>0.014</td>
</tr>
<tr>
<td>60</td>
<td>26</td>
<td>Lahemaa, Estonia</td>
<td>2007-2008</td>
<td>2</td>
<td>NA</td>
<td>2.115</td>
<td>NA</td>
<td>2.394</td>
<td>0.133</td>
<td>0.156</td>
</tr>
<tr>
<td>60</td>
<td>17</td>
<td>Aspvreten, Sweden Ω</td>
<td>2004-2008</td>
<td>2</td>
<td>1.261</td>
<td>2.279</td>
<td>0.238</td>
<td>0.483</td>
<td>0.056</td>
<td>0.135</td>
</tr>
<tr>
<td>58</td>
<td>8</td>
<td>Birkenes, Norway</td>
<td>2008-2009</td>
<td>2</td>
<td>0.767</td>
<td>2.279</td>
<td>0.093</td>
<td>0.483</td>
<td>0.024</td>
<td>0.167</td>
</tr>
<tr>
<td>57</td>
<td>12</td>
<td>Rào, Sweden Ω</td>
<td>2004-2008</td>
<td>2</td>
<td>1.085</td>
<td>3.083</td>
<td>0.249</td>
<td>0.600</td>
<td>0.062</td>
<td>0.167</td>
</tr>
<tr>
<td>55</td>
<td>8</td>
<td>Westerland, Germany</td>
<td>2007-2008</td>
<td>2</td>
<td>2.455</td>
<td>3.057</td>
<td>0.535</td>
<td>0.646</td>
<td>0.081</td>
<td>0.264</td>
</tr>
<tr>
<td>54</td>
<td>13</td>
<td>Zingst, Germany</td>
<td>2006-2008</td>
<td>2</td>
<td>2.802</td>
<td>1.328</td>
<td>0.365</td>
<td>0.255</td>
<td>0.108</td>
<td>0.293</td>
</tr>
<tr>
<td>54</td>
<td>-1</td>
<td>High Muffles, Great Britain</td>
<td>2004-2008</td>
<td>2</td>
<td>5.282</td>
<td>5.614</td>
<td>0.443</td>
<td>1.142</td>
<td>0.055</td>
<td>0.106</td>
</tr>
<tr>
<td>51</td>
<td>11</td>
<td>Schmucke, Germany</td>
<td>2007-2008</td>
<td>2</td>
<td>3.306</td>
<td>5.347</td>
<td>0.424</td>
<td>1.187</td>
<td>0.094</td>
<td>0.474</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>Kosetice, Czech Republic</td>
<td>2004-2008</td>
<td>2</td>
<td>5.630</td>
<td>4.688</td>
<td>1.226</td>
<td>1.010</td>
<td>0.305</td>
<td>0.547</td>
</tr>
<tr>
<td>48</td>
<td>8</td>
<td>Schauinsland, Germany</td>
<td>2007-2008</td>
<td>2</td>
<td>1.468</td>
<td>0.138</td>
<td>0.207</td>
<td>0.016</td>
<td>0.042</td>
<td>0.423</td>
</tr>
<tr>
<td>47</td>
<td>-88</td>
<td>Eagle Harbor, MI, USA†</td>
<td>2004-2008</td>
<td>3</td>
<td>0.403</td>
<td>0.609</td>
<td>0.047</td>
<td>0.099</td>
<td>0.011</td>
<td>0.032</td>
</tr>
<tr>
<td>45</td>
<td>-86</td>
<td>Sleeping Bear Dunes, MI, USA†</td>
<td>2004-2008</td>
<td>3</td>
<td>0.600</td>
<td>0.651</td>
<td>0.098</td>
<td>0.104</td>
<td>0.033</td>
<td>0.032</td>
</tr>
<tr>
<td>43</td>
<td>-5</td>
<td>Nienbro, Spain</td>
<td>2004-2006</td>
<td>2</td>
<td>0.024</td>
<td>0.762</td>
<td>0.178</td>
<td>0.158</td>
<td>0.031</td>
<td>0.059</td>
</tr>
<tr>
<td>43</td>
<td>-79</td>
<td>Sturgeon Point, NY, USA†</td>
<td>2004-2008</td>
<td>3</td>
<td>4.787</td>
<td>3.606</td>
<td>0.499</td>
<td>0.761</td>
<td>0.095</td>
<td>0.239</td>
</tr>
<tr>
<td>42</td>
<td>-88</td>
<td>Chicago, IL, USA†§</td>
<td>2004-2008</td>
<td>3</td>
<td>28.037</td>
<td>2.240</td>
<td>3.024</td>
<td>0.416</td>
<td>0.408</td>
<td>0.130</td>
</tr>
<tr>
<td>41</td>
<td>-82</td>
<td>Cleveland, OH, USA†§</td>
<td>2004-2008</td>
<td>3</td>
<td>28.011</td>
<td>3.606</td>
<td>2.911</td>
<td>0.761</td>
<td>0.319</td>
<td>0.239</td>
</tr>
<tr>
<td>41</td>
<td>117</td>
<td>Gubeikou, China†§</td>
<td>2007-2008</td>
<td>4</td>
<td>68.825</td>
<td>2.869</td>
<td>18.475</td>
<td>0.816</td>
<td>3.425</td>
<td>0.436</td>
</tr>
<tr>
<td>40</td>
<td>115</td>
<td>XiaoLongmen, China†§</td>
<td>2007-2008</td>
<td>4</td>
<td>10.500</td>
<td>21.353</td>
<td>0.750</td>
<td>6.637</td>
<td>0.167</td>
<td>2.975</td>
</tr>
</tbody>
</table>

Mean from all locations ± 1 sd

| | 12.9 ± 28.0 | 3.31 ± 4.67 | 2.34 ± 5.46 | 0.81 ± 1.46 | 0.48 ± 0.20 | 0.34 ± 0.65 |

Mean from nonurban locations ± 1 sd

| | 1.71 ± 1.83 | 2.19 ± 1.84 | 0.28 ± 0.31 | 0.45 ± 0.40 | 0.07 ± 0.07 | 0.18 ± 0.18 |

Mean from Arctic locations ± 1 sd

| | 0.178 ± 0.197 | 0.362 ± 0.289 | 0.040 ± 0.034 | 0.057 ± 0.054 | 0.008 ± 0.010 | 0.006 ± 0.008 |

Table 1. Mean (± one standard deviation) total (gas + particulate) concentrations observed and simulated at measurement locations (2005-2009). †Gas-particle ratios provided by reference. §Site considered urban and/or highly impacted by local sources. Sites > 66°N are considered Arctic. ΩMean seasonal total deposition (wet + dry) provided by reference. Observations from sites shaded with the same color occurred within the same GEOS-Chem grid box and were averaged. References: (1) Northern Contaminants Program and
Environment Canada; (2) EMEP; (3) IADN; (4) Wang et al. (2011)66. Data from reference 3 was provided prior to a routine QA/QC procedure.
LITERATURE CITED

44. Liu, H.; Jacob, D. J.; Bey, I.; Yantosca, R. M. Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. *J. Geophys. Res.* **2001**, *106*(D11), 12,109-12,128.

Long-range atmospheric transport of polycyclic aromatic hydrocarbons: A global 3-D model analysis including evaluation of Arctic sources

SUPPORTING INFORMATION

Carey L. Friedman§* and Noelle E. Selin†
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
*Corresponding author e-mail: clf@mit.edu
§Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
†Engineering Systems Division and Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA

Contents
Parameterization of temperature dependent gas-particle partitioning S2
OC and BC aerosol concentrations S2
Gas phase OH oxidation schemes S2-S3
On-particle O₃ oxidation schemes S3
Table S1: Physicochemical constants used in model for PHE, PYR, and BaP S4
Table S2: Overall lifetimes and lifetimes due to different processes for PHE, PYR, and BaP S4
Figure S1: Simulated vs. measured PHE, PYR, and BaP scatter plot of data from main text Table 1 S5
Figure S2: Geometric seasonal mean nonurban mid-latitude concentrations S6
Figure S3: Geometric seasonal mean Arctic concentrations S7
Figure S4: Simulated vs. measured PHE, PYR, and BaP at urban locations S8
Figure S5: GEOS-Chem global budget for PHE, PYR, and BaP S9
Figure S6: Seasonal wet and dry deposition of PHE, PYR, and BaP S10
Figure S7: Annual wet and dry deposition of PHE, PYR, and BaP S11
Figure S8: Simulated vs. measured BaP with simulations conducted using both hydrophobic and hydrophilic aerosol scavenging efficiencies S12
Figure S9: Simulated vs. measured PHE, PYR, and BaP at Spitsbergen, NO (2005) S13
Figure S10: Simulated vs. measured PHE, PYR, and BaP at Spitsbergen, NO (2006) S14
Figure S11: Simulated (both 4°×5° and 2°×2.5° spatial resolution) vs. measured PHE, PYR, and BaP at Spitsbergen, NO (2008) S15
Figure S12: Simulated (both 4°×5° and 2°×2.5° spatial resolution) vs. measured PHE, PYR, and BaP at Spitsbergen, NO (2009) S16
Literature cited S17
Temperature dependence of gas-particle partitioning

We incorporate K_{OA} temperature dependence into the default model according the van’t Hoff relationship:

$$K_{OA}(T_2) = K_{OA}(T_1) \cdot e^{\frac{\Delta_{OA}H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$ \hspace{1cm} (Eq. S1)

where T_1 is 298 K and T_2 is ambient atmospheric temperature (K), R is the ideal gas constant ($J \text{ mol}^{-1} \text{ K}^{-1}$), and $\Delta_{OA}H$ is the enthalpy of phase change from air to octanol ($J \text{ mol}^{-1}$), estimated from the enthalpy of phase change from the pure liquid state to the gas phase1. Values of K_{OA} and $\Delta_{OA}H$ are provided below in Table S1.

OC and BC aerosol concentrations

Monthly mean OC and BC aerosol concentrations were simulated with GEOS-Chem separately from PAHs for the year 2008. Monthly mean OC and BC concentrations were then used as input to all years of the default PAH simulation. Therefore, there was no interannual variability in OC/BC. Minimum monthly OC concentrations ranged from 0 ng C m$^{-3}$ (Feb., Sep., Oct.) to 4.2E-12 ng C m$^{-3}$ (March), while maximum concentrations ranged from 1.2E+4 ng C m$^{-3}$ (Nov.) to 1.7E+5 ng C m$^{-3}$ (June). Minimum BC concentrations ranged from 0 ng C m$^{-3}$ (June) to 4.4E-12 ng C m$^{-3}$ (August) and maximum concentrations ranged from 4.0E+3 ng C m$^{-3}$ (Dec.) to 3.8E+4 ng C m$^{-3}$ (June).

OH oxidation

Standard simulations have a temperature-independent k_{OH}, but a temperature-dependent k_{OH} sensitivity analysis was conducted for PHE, with k_{OH} determined by the Arrhenius expression:
where the pre-exponential factor (A) and the activation energy (E_a) are from Brubaker and Hites\(^2\). Empirically determined A and E_a are unavailable for PYR and BaP.

On-particle O\(_3\) oxidation schemes

Pöschl reaction scheme: According to Pöschl et al. (2001)\(^3\), the reaction of soot particulate BaP with ozone (O\(_3\)) will proceed at rate k (s\(^{-1}\)):

\[
k = k_{\text{max}} (K_{O_3}) [O_3]/(1 + K_{O_3} [O_3])
\]

(Eq. S3)

where \(k_{\text{max}}\) is the maximum pseudo-first-order BaP decay rate coefficient in the limit of high O\(_3\) concentrations (s\(^{-1}\)); \(K_{O_3}\) is the Langmuir adsorption equilibrium constant for O\(_3\) (cm\(^3\)), and [O\(_3\)] is the ambient ozone concentration (molec/cm\(^3\)). Pöschl et al. determined that for oxidation of BaP on spark discharge soot particles at 296 K and 1 atm, \(k_{\text{max}} = 0.015 \pm 0.001\) s\(^{-1}\) and \(K_{O_3} = (2.8 \pm 0.2) \times 10^{-13}\) cm\(^3\).

Kahan reaction scheme: Kahan et al. (2006)\(^4\) follow the same general reaction scheme, but fit an observed \(k_{O_3}\) to an equation of the form:

\[
k_{\text{obs}} = \frac{A \times [O_3(g)]}{B + [O_3(g)]}
\]

(Eq. S4)

and find that for the ozonation of surface BaP dissolved in octanol, \(A = (5.5 \pm 0.2) \times 10^{-3}\) s\(^{-1}\) and \(B = (2.8 \pm 0.4) \times 10^{15}\) molec/cm\(^3\).

Kwamena reaction scheme: Kwamena et al. (2004)\(^5\) follow the same equation as Pöschl et al. and find that for oxidation of BaP on azelaic acid aerosols at 72% relative humidity, \(k_{\text{max}} = 0.060 \pm 0.018\) s\(^{-1}\) and \(K_{O_3} = (2.8 \pm 1.4) \times 10^{-15}\) cm\(^3\).
TABLES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>PHE</th>
<th>PYR</th>
<th>BaP</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>log K_{OA}</td>
<td>Octanol-air partition coefficient</td>
<td>7.64</td>
<td>8.86</td>
<td>11.48</td>
<td>1</td>
</tr>
<tr>
<td>log K_{BC}</td>
<td>Black carbon-air partition coefficient</td>
<td>10.0</td>
<td>11.0</td>
<td>13.9</td>
<td>2</td>
</tr>
<tr>
<td>$\Delta_{OA} H$ (kJ/mol)</td>
<td>Enthalpy of phase transfer from gas phase to OC</td>
<td>-74</td>
<td>-87</td>
<td>-110</td>
<td>3</td>
</tr>
<tr>
<td>$\Delta_{BC} H$ (kJ/mol)</td>
<td>Enthalpy of phase transfer from gas phase to BC</td>
<td>-74</td>
<td>-87</td>
<td>-110</td>
<td>3</td>
</tr>
<tr>
<td>k_{OH} (cm3/molec/s)</td>
<td>Reaction rate constant for oxidation of gas phase with OH</td>
<td>2.70 × 10$^{-11}$, 1.30 × 10$^{-11}$</td>
<td>5.00 × 10$^{-11}$</td>
<td>5.00 × 10$^{-11}$</td>
<td>4, 5</td>
</tr>
<tr>
<td>A (cm3/s)</td>
<td>Pre-exponential factor (Arrhenius equation)</td>
<td>14 × 10$^{-14}$</td>
<td>___</td>
<td>___</td>
<td>4</td>
</tr>
<tr>
<td>E_a (J/mol)</td>
<td>Activation energy</td>
<td>-1.6 × 105</td>
<td>___</td>
<td>___</td>
<td>4</td>
</tr>
<tr>
<td>log K_{AW}</td>
<td>Air-water partition coefficient</td>
<td>-2.76</td>
<td>-3.27</td>
<td>-4.51</td>
<td>1</td>
</tr>
<tr>
<td>$\Delta_{AW} H$ (kJ/mol)</td>
<td>Enthalpy of phase transfer from water to air</td>
<td>-47</td>
<td>-43</td>
<td>-43</td>
<td>3</td>
</tr>
<tr>
<td>ρ_{oct} (kg/m3)</td>
<td>Density of octanol</td>
<td>820</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ρ_{BC} (kg/m3)</td>
<td>Density of BC</td>
<td>1000</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Table S1. Physicochemical constants used in model for PHE, PYR, and BaP. References: (1) Ma et al., 20106; (2) Lohmann and Lammel, 20047; (3) Schwarzenbach et al., 20031; (4) Brubaker and Hites, 19982; (5) U.S. EPA Episuite software8.

<table>
<thead>
<tr>
<th>PAH</th>
<th>Phase</th>
<th>Oxidation</th>
<th>Wet deposition</th>
<th>Dry deposition</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHE</td>
<td>Gas</td>
<td>0.18</td>
<td>45</td>
<td>0.83</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>___</td>
<td>11</td>
<td>2.4</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>___</td>
<td>8.4</td>
<td>3.0</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>0.15</td>
</tr>
<tr>
<td>PYR</td>
<td>Gas</td>
<td>0.14</td>
<td>20</td>
<td>0.33</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>___</td>
<td>14</td>
<td>2.4</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>___</td>
<td>9.2</td>
<td>3.4</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>0.11</td>
</tr>
<tr>
<td>BaP</td>
<td>Gas</td>
<td>0.017</td>
<td>0.67</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>___</td>
<td>3.8</td>
<td>1.8</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>___</td>
<td>4.2</td>
<td>2.3</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Table S2. Lifetimes (days) of gas, OC- and BC-phase PHE, PYR, and BaP against oxidation and wet and dry deposition, and total PHE, PYR, and BaP lifetimes. The calculation of overall lifetimes for each phase include loss and addition due to reversible partitioning (individual lifetimes due to partitioning not shown).
Figure S1. Simulated versus observed concentrations (ng m\(^{-3}\)) for PHE (blue diamonds), PYR (red squares), and BaP (green triangles) for all nonurban stations shown in Table 1 in the main text. The one-to-one line is shown in black. The fitted linear equations are \(y = 0.65x + 1.09\) (PHE, \(n = 15\)); \(y = 0.93 + 0.19\) (PYR, \(n = 15\)); \(y = 1.78x + 0.07\) (BaP, \(n = 16\)).
Concentration (ng m\(^{-3}\))

Figure S2. Nonurban mid-latitude geometric mean total concentration (gas + particle) seasonal variation from sites/years listed in Table 1 (observed; solid black line) and for simulated years 2005-2009 (modeled; dotted black line) for a) PHE, b) PYR, and c) BaP. Error bars are ± one geometric standard deviation of monthly means across sites. Colored lines represent results from sensitivity analyses. Simulated and observed data are identical to those shown in Figure 2 in the main text.
Figure S3. Arctic geometric mean total concentration (gas + particle) seasonal variation from sites/years listed in Table 1 (observed) and for simulated years 2005-2009 (modeled) for (a) PHE, (b) PYR, and (c) BaP. Error bars are ± one geometric standard deviation of monthly means across sites. Colored lines represent results from sensitivity analyses. Simulated and observed data are identical to those shown in Figure 3 in the main text.
Figure S4. Mean seasonal total concentrations (ng m$^{-3}$) of a) PHE, b) PYR, and c) BaP at two urban stations (also Great Lakes stations): Sturgeon Point, New York, USA, and Cleveland, Ohio, USA. The figure demonstrates that GEOS-Chem underpredicts concentrations at urban locations and does not capture the summer-time maximum for PHE and PYR.
Figure S5. Global budget of atmospheric PHE (red), PYR (green), and BaP (purple) in GEOS-Chem. Inventories are in Mg (boxes) and rates are in Mg yr$^{-1}$ (arrows).
Figure S6. Mean seasonal total deposition (wet and dry combined) of a) PHE, b) PYR, and c) BaP observed at three northern European stations (solid line; see Table 1 in main text) and mean modeled total deposition (dotted line) from same sites. Modeled deposition was determined with a hydrophobic aerosol scavenging rate applied to particulate PAHs. Error bars are +/- one standard deviation of monthly means across sites.
Figure S7. Mean annual PHE (a), PYR (b), and BaP (c) total (wet + dry) simulated concentrations in surface air from 2005-2009 (background). Land-based observations for deposition from Table 1 are shown with circles. Observations from long-term monitoring stations are inter-annual means for the years shown in Table 1.
Figure S8. Simulated concentrations of BaP at non-urban mid-latitude locations using both the default particulate wet deposition scavenging efficiency, i.e., as hydrophobic aerosols, and scavenging with a hydrophilic aerosol efficiency. Also shown are observed BaP concentrations. Applying a hydrophilic scavenging efficiency results in a small decrease in mean atmospheric total BaP concentrations. Changing the particulate scavenging rate efficiency had no effect on PHE or PYR concentrations. Error bars are +/- one standard deviation of monthly means across sites.
Figure S9. 2005 simulated and measured total a) PHE, b) PYR, and c) BaP at Spitsbergen, Norway.
Figure S10. 2006 simulated and measured total a) PHE, b) PYR, and c) BaP at Spitsbergen, Norway.
Figure S11. 2008 simulated and measured total a) PHE, b) PYR, and c) BaP at Spitsbergen, Norway. In addition, simulated concentrations at a 2°×2.5° spatial resolution are shown. Running the model at a finer spatial resolution results in increased plume concentrations, which are likely due to either a) decreased averaging of PAH plumes under a finer resolution, or b) decreased averaging of horizontal winds, which can result in weaker vertical transport and potentially less transport to Arctic regions\(^9\). The same effect is shown for 2009 simulations (below).
Figure S12. 2009 simulated and measured total a) PHE, b) PYR, and c) BaP at Spitsbergen, Norway. In addition, simulated concentrations at a 2°×2.5° spatial resolution are shown (see discussion in Figure S11 caption).
Literature Cited

