Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1318943111</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Dec 19 02:04:29 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/91515</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
</tbody>
</table>
Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations

YutakaYawata1, Otto X. Cordero, Filippo Menolascina, Jan-Hendrik Hehemann, Martin F. Polz, and Roman Stocker2

Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Tom M. Fenchel, University of Copenhagen, Helsingor, Denmark, and approved February 6, 2014 (received for review October 9, 2013)

Although competition–dispersal tradeoffs are commonly invoked to explain species coexistence for animals and plants in spatially structured environments, such mechanisms for coexistence remain unknown for microorganisms. Here we show that two recently speciated marine bacterioplankton populations pursue different behavioral strategies to exploit nutrient particles in adaptation to the landscape of ephemeral nutrient patches characteristic of ocean water. These differences are mediated primarily by differential colonization of and dispersal among particles. Whereas one population is specialized to colonize particles by attaching and growing biofilms, the other is specialized to disperse among particles by rapidly detecting and swimming toward new particles, implying that it can better exploit short-lived patches. Because the two populations are very similar in their genomic composition, metabolic abilities, chemotactic sensitivity, and swimming speed, this fine-scale behavioral adaptation may have been responsible for the onset of the ecological differentiation between them. These results demonstrate that the principles of spatial ecology, traditionally applied at macroscales, can be extended to the ocean’s microscale to understand how the rich spatiotemporal structure of the resource landscape contributes to the fine-scale ecological differentiation and species coexistence among marine bacteria.

Significance

The resource landscape for marine microbes is composed of microscale resource patches, but whether this microheterogeneity can drive the ecological differentiation of natural microbial populations remains unclear. The tradeoff between two nascent populations of marine bacteria demonstrated here is significant for several reasons. First, it illustrates that principles of spatial ecology, so far only illustrated for animals and plants, apply to the ephemeral, microscale nutrient landscape of marine microbes. Second, the results suggest that differential behavior can ensure coexistence of otherwise very similar populations of organisms. Finally, because the demonstrated tradeoff induces microgeographic separation among the populations, it may be a crucial step in initiating gene flow barriers that ultimately allow the populations to embark on differential evolutionary trajectories.

Author contributions: Y.Y., O.X.C., M.F.P., and R.S. designed research; Y.Y. and F.M. performed research; Y.Y. and J.-H.H. contributed new reagents/analytic tools; Y.Y., O.X.C., and F.M. analyzed data; and Y.Y., O.X.C., M.F.P., and R.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence may be addressed. E-mail: yyawata@mit.edu or romans@mit.edu.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1318943111/DCSupplemental.

5622–5627 | PNAS | April 15, 2014 | vol. 111 | no. 15

www.pnas.org/cgi/doi/10.1073/pnas.1318943111
underpinning their niche partitioning and the ecological tradeoff enabling their coexistence.

We demonstrate that the two V. cyclitrophicus populations have different ecological strategies to interact with microscale nutrient patches in the ocean. We show that the superior ability of the particle-attaching L population to colocalize with the highest nutrient concentrations is offset by the ability of the nonattaching S population to rapidly migrate to new nutrient sources upon a temporal change in the nutrient landscape. These results reveal that the ecological differentiation of the two sympatric populations is driven by a competition–dispersal tradeoff, whereby exploitation of individual nutrient patches comes at the cost of a reduced ability to migrate toward new patches. The ephemeral nature of marine microscale nutrient patches thus enables the coexistence of two foraging strategies, respectively favoring high access to resources at the individual patch level and at the microscale landscape level.

Results and Discussion

We began our systematic comparison of spatial behavioral adaptations by measuring the ability of the two populations to attach to and colonize surfaces, motivated by the predominant occurrence of the L and S populations in the large-particle fraction and the free-living fraction of seawater samples, respectively (16). Attachment to surfaces is a widespread phenotype of marine bacteria (20), used to associate with particles and hosts (21–23), and a genomic comparison of the two populations suggested differential genetic potential for attachment (18).

We found strong and widespread differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic. We measured similar differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic. We measured similar differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic. We measured similar differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic. We measured similar differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic. We measured similar differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic. We measured similar differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic. We measured similar differences in the attachment behavior of seven L and five S isolates, respectively. Imaging of attachment to polystyrene over 1 h (SI Materials and Methods) yielded a ratio, α, of 4.9 between the numbers of attached cells for L (695 ± 161 cells per mm²) and S-population isolates (143 ± 59 cells per mm²) (Fig. 1A). The attachment ratio was even larger (α = 42.4) when the surface was more hydrophobic (Fig. S1A), and only mildly smaller (α = 4.4) when it was more hydrophilic.

These behavioral differentiations in surface colonization are supported by both genomic and phenotypic evidence. Genomic analysis has shown that only a small number of gene clusters are specific to either population (18). All isolates from the L population but none from the S population harbor the mannose-sensitive hemagglutinin (msh) gene cluster (18) (Fig. 1D), which encodes the mannose-sensitive hemagglutinin type IV pili and is involved in the surface attachment of Vibrio cholerae (26). The differential presence of the msh gene cluster exactly matches the difference in surface attachment between the two populations (Fig. 1D and Fig. S1A–C and E) and is further confirmed at the phenotypic level: By imaging 25 cells from two isolates per population via electron microscopy, we found that pili are present in 84–91% of cells from the L population and in 0% of cells from the S population (Fig. 1E). A second gene cluster
harbored only by the L population is the symbiosis polysaccharide (syp) cluster (18) (Fig. 1D), which is involved in the production of extracellular matrix in *Vibrio fischerii* (27). Its differential presence matches the superior ability of the L population to form biofilms (Fig. 1B and C and Fig. S1D). Among all population-specific genes that have been reported for these two populations (18), the only genes potentially related to attachment are those in the *msh* and *syb* clusters. The specificity of the *msh* and *syb* gene clusters, together with their known functions in other *Vibrio* species, suggests that they play a fundamental role in regulating the different habitat preferences between the two *V. cyclitrophicus* populations.

In the ocean, particles are nutritional hotspots in an otherwise nutrient-poor water column, and considerably increase uptake rates of attached bacteria (28). Our observations of differential attachment then imply a competitive advantage for the L population, owing to its superior ability to colocalize with the high nutrient concentrations occurring on particles. We verified this hypothesis by quantifying growth on alginate as the sole carbon source: We provided cells the same total amount of alginate in either particulate or dissolved form, and compared their growth rate on the two forms of alginate to isolate the effect of the physical interaction with particles. Having resources concentrated on particles generally decreases the rate of nutrient exposure per cell compared with the ease of uniformly dissolved nutrients. This spatial localization of resources had a much stronger negative impact on the S-population isolate 1F11, whose drop in growth rate on particulate alginate relative to dissolved alginate was more than twofold larger compared with the L-population isolate ZF270 (Fig. 1F), which was able to compensate by attaching to and colocalizing with the particles. This result confirms the hypothesis that attachment confers a growth advantage to cells from the L population and shows how the physical interaction between bacteria and particles has a considerable effect on growth.

What tradeoff, then, prevents the S population from being outcompeted? We hypothesized that the two populations differ in their ability to swim or respond to chemical gradients (chemotaxis), two widespread phenotypes in the ocean, where they allow bacteria to locate and exploit microscale nutrient patches (6, 7, 29). Specifically, we expected that the S population would have superior motility and chemotaxis to compensate for the disadvantage in attachment. However, detailed analysis of traditionally measured behavioral abilities—swimming speed and chemotactic preferences—yielded highly comparable responses for the two populations. Instead, a microfluidic system quantifying the response to temporal shifts in the nutrient landscape revealed a strong difference between L and S isolates, showing that the tradeoff between the two populations does not occur at the level of an individual patch but rather resides in the differentiation between a strategy that maximizes access to resources at the patch level (L population) and one that favors access to resources at the landscape level (S population). In the following, we demonstrate these results.

Cell tracking (SI Materials and Methods) showed that all 12 isolates exhibited comparable swimming speeds, averaging 59 ± 12 μm/s (S) and 54 ± 9 μm/s (L) (Fig. 2A). Additional measurements for S-isolate 1F53 and L-isolate ZF270 further showed that cell size and flagellation are comparable (Fig. 2A) and that the similarity in swimming speed is independent of the growth stage (Fig. 2A, Inset).

Chemotaxis toward steady resource gradients, generated by diffusion within microfluidic devices (design 1; Fig. S2), also revealed no significant difference between the two populations. This can be seen from the spatial distribution of cells for each of the 12 isolates along a gradient of the amino acid serine (Fig. 2B and C). A quantitative comparison of the chemotaxis magnitude, defined as the skewness of the cell distribution (Fig. 2D), yielded values of 1.1 ± 0.3 (S) and 1.0 ± 0.2 (L). An in-depth comparison between S-isolate 1F53 and L-isolate ZF28 showed comparable chemotaxis also toward other important marine chemotactants (Fig. 2E), including glucose, a product of photosynthesis by phytoplankton (30); N-acetyl glucosamine (GlcNAc), the monomer of the chitin exoskeleton of many marine organisms (31); and dimethylsulfiniopropionate (DMSP), a climatically important sulfur compound that serves a broad range of physiological and signaling functions in the ocean (32). Although we cannot rule out differences in the chemotactic preferences for other chemical compounds, these observations strongly suggest that the S population does not outperform the L population in terms of swimming ability and chemotactic responses to steady resource gradients.

Taken together, the results on attachment and motility imply that the tradeoff enabling the coexistence of the two populations cannot be understood at the single-patch level. Instead, the stable surface colonization by the L population together with the transient nature of resource hotspots in the ocean, where lysis (33), sloppy feeding (34), particle sinking (34), and turbulent stirring (29) all result in ephemeral patches of dissolved organic matter (35–37), led us to hypothesize that the S population gains its competitive advantage at the microscale landscape level by exploiting the temporal variability of the resource landscape and the continuous appearance of new patches. Specifically, we tested the hypothesis that S cells can better respond to a temporal change in the resource landscape. We first generated a steady resource gradient by releasing serine from the porous

![Fig. 2. Motility and chemotaxis are very similar for the two genetic populations of *V. cyclitrophicus*. (A) Swimming speed of the 12 isolates from the S (blue) and L (red) populations, measured at mid-exponential phase. Dashed lines and shadings denote averages and SDs for each population. (Inset) Growth-stage dependence of speed for one S (blue) and one L (red) isolate, whose cell shape is shown in the TEM images. (B) Swimming trajectories (white) in a steady, linear serine concentration profile for one S (blue) and one L (red) isolate. (C) Bacterial distribution along a serine gradient, quantified as the relative concentration of cells at distance from the serine source (z = 0). (D) Magnitude of chemotaxis toward serine, quantified as the skewness of the bacterial distributions in C. Dashed lines and shadings denote averages and SDs for each population. (E) Bacterial distribution in gradients of o-glucose, GlcNAc, and DMSP for one S (blue) and one L (red) isolate. Numbers denote chemotaxis magnitude. In all panels (except B), data are averages over three experiments, and error bars denote SDs.](https://www.pnas.org/doi/10.1073/pnas.1318943111)
sidewall of a microfluidic device (design 2; Figs. S3 and S4), whereupon cells from both populations (isolates 1F111 and ZF270) rapidly (<3 min) migrated toward the serine-releasing surface (Fig. 3A). After 10 min, we switched the serine release to the opposite sidewall, thus inverting the direction of the gradient. Strikingly, only the S isolate (1F111) responded to the change, by migrating toward the new nutrient-rich surface within <10 min (Fig. 3B and C and Movie S1). In contrast, the L isolate (ZF270) remained attached to the original surface (for at least 30 min; Fig. 3C), despite the considerable nutritional impoverishment of that surface. Additional experiments with a device that allowed quantification of attachment in the presence of chemical gradients confirmed the differential behavior of the two populations (Figs. S5–S8 and SI Results and Discussion).

The steady attachment to particles thus creates a tradeoff between resource accessibility at the patch and landscape levels. Because of their stable attachment to particles, L cells have higher access to resources at the patch level. However, this comes to the detriment of their migration ability in response to temporal changes in nutrient availability, which limits their access to resources at the microscale landscape level. In contrast, S cells do not commit to surfaces by attachment and biofilm formation—reducing their growth rate on particles compared with L cells (Fig. 1F)—but are continuously ready to migrate to new patches. Thus, the L and S populations differ in their ecological strategies for resource utilization, with the L population being better at accessing localized resources at the individual patch level and the S population being better at dispersing and discovering new patches. The result is a tradeoff between competition and dispersal (1, 4, 9–11, 14) that we expect favors either population depending on the spatiotemporal particle dynamics in the environment: Whereas the L population benefits from long-lived particles where steady attachment yields a competitive advantage (Fig. 1F), the S population benefits from high rates of particle turnover where frequent migration is advantageous (38, 39).

Our finding thus provides a new interpretation of the predominance of S and L populations in different size fractions of the marine water column (16, 18): Prevalent occurrence in small size fractions does not imply habitat specialization toward bulk water conditions but rather propensity to migration among hotspots over particle attachment. Furthermore, the ecological tradeoff we identified provides a simple explanation for coexistence even if populations fully overlap in their metabolic preferences, and indeed both the gene content and a Biolog assay suggest strong metabolic similarity between the two populations (Fig. S9 and SI Results and Discussion). Finally, a different experimental system capable of producing and renewing surfaces and gradients over several generations will be required to directly test coexistence, something that was not possible in our microfluidic devices. Such a system will further reveal the role of environmental conditions (concentration and composition of particles, rate of occurrence of new particles, particle size, duration of chemical release from a particle) in the outcome of the coexistence and relative prevalence of each population.

The systematic analysis of a broad spectrum of spatial behaviors suggests a model for the ecological and evolutionary differentiation between the two populations of V. cyclitrophicus (Fig. 4). Isolates from the L population find particles by chemotaxis, attach, and establish a steady association with them by building biofilms. This affords them access to the highest

![Fig. 3. Only the S population can rapidly respond to a temporal change in nutrient conditions. (A) Behavioral response of one S (blue) and one L (red) isolate in a temporally varying nutrient landscape. Large panels show swimming trajectories; small panels show the region close to the left sidewall, from which serine was released for the first 10 min. (B) Time course of the chemotaxis magnitude (as in Fig. 2D). Positive values of the chemotaxis magnitude indicate attraction towards the left side of the channel; negative values indicate attraction towards the right side of the channel. Because surface-attached cells are not included when quantifying chemotaxis, the magnitude of chemotaxis of the L population here is lower than in Fig. 2D, due to the strong attachment of the L population to the agarose sidewalls of the test channel in the design 2 device (Fig. S3) used here, compared with the PDMS sidewalls in the design 1 device (Fig. S2) used to obtain Fig. 2D. (C) Time course of the number of cells swimming in the bulk (>5 μm from either sidewall). The decrease for the S population around 10 and 30 min was due to cells hovering adjacent to the (serine-releasing) sidewalls, where cell tracking is hindered by optical reflections (SI Results and Discussion). The dashed line indicates when the direction of the attractant gradient was switched. Data are averages from four experiments and error bars denote SDs.](image-url)
nutrient concentrations: They are the first line of consumption of dissolved nutrients generated in the particle [e.g., by enzymatic processes (40)], making them strong competitors on these nutrient patches. In contrast, isolates from the S population find nutrient hotspots, including particles, by chemotaxis, but only associate with particles loosely by hovering in close proximity to their surface, without settling. Although this puts them in “second row” in terms of access to particle-originated nutrients, it buys them the flexibility to rapidly respond to new hotspots, for example when nutrients on the particle dwindle or a stronger hotspot appears nearby. We note that, beyond this fundamental differentiation in ecological strategies, coexistence can further be driven by other side effects of spatial partitioning, such as less-direct competition for resources between the S and L populations and different mortality rates due to higher preference of predators for particles. Additionally, a population-specific allele sweep in the rpoS2 sigma factor gene previously detected (18) may complement niche adaptation by mediating differential responses to stress.

These different ecological strategies could contribute to recombination between populations, promoting sympatric genetic differentiation and lineage diversion and explaining the gene flow boundary previously reported (16, 18). The origin of this gene flow boundary is thus considerably subtler than expected, because it does not require metabolic differentiation and operates only through differential propensity for attachment to particles and dissociation from nutrient hotspots. Given the ease with which these behavioral differences could evolve, for example by horizontal gene transfer of the msh or vph gene clusters, we propose that this bifurcation of spatial behaviors drove the early stages of population differentiation in V. cyclitrophicus. This work, then, provides a blueprint for connecting behavioral adaptations with microbial diversity and highlights how subtle a difference in spatial behavior can be sufficient to curtail gene flow among populations, and how important the spatial and temporal signatures of the marine microscale nutrient landscape are for microbial diversification in the ocean.

Materials and Methods

Microfluidic Devices. Two different versions of the microfluidic gradient generator, modified from ref. 41, were used in the chemotaxis experiments with steady linear concentration profiles (design 1; Fig. S2A; results in Fig. 2) and time-varying concentration profiles (design 2; Fig. S3A; results in Fig. 3). Design 1 corresponds to design 1 in ref. 41, whereas design 2 is a variant on the same design principle. Both gradient generators are made of three layers: a polydimethylsiloxane (PDMS) layer on top (impermeable to solutes), an agarose layer in the middle (permeable to solutes), and a glass slide at the bottom (for support). The design concept consists of fabricating micro-channels within the layer of PDMS (Sylgard 184; Dow Corning) and/or the layer of agarose (Ultra Pure Agarose; Invitrogen) to establish chemoattractant gradients by diffusion (Figs. S2 and S3). PDMS channels were designed using CAD software (Autodesk) and printed onto transparency film with a high-resolution image setter (Fineline Imaging). For details on fabrication and operation of microfluidic devices, see SI Materials and Methods.

Cell Tracking Within Concentration Gradients. Cells were imaged in phase contrast using a 10× (N.A. 0.30) or 20× (N.A. 0.45) objective by acquiring sequences of 200 frames (movies) at 50 frames per s with a CCD camera (PCO 1600; Cooke; 1,600 × 1,200 pixels). The field of view was 0.9 × 1.2 mm with the 10× objective and 0.45 × 0.6 mm with the 20× objective. Swimming trajectories were obtained from each movie by locating the maximum pixel intensity for each pixel over the duration of the movie. We performed image analysis by subtracting each frame from the following one, to focus only on motile cells, and by subsequently locating bacteria in each frame as peaks in a monochrome intensity field, using IPLab (Scanalytics). Bacterial positions were determined over all frames in a movie and binned to yield the relative bacterial concentration profile, as a function of the distance from the sidewall of the test chamber with the highest chemoattractant concentration, using custom MATLAB (The MathWorks) routines.

Chemotaxis in Steady, Linear Chemoattractant Profiles. Design 1 (Fig. S2A) among the microfluidic gradient generators was used for the chemotaxis assays under steady linear profiles of chemoattractant concentration. In this design, the irrigation channels and the test channel are all located within the PDMS layer. By continuously flowing chemoattractant in one of the two irrigation channels and filtered autoclaved seawater in the other and relying on diffusion of the chemoattractant into the underlying agarose layer, this device produces a steady, linear concentration profile within the underlying agarose layer (41). By diffusion, this linear chemoattractant profile also extends into the cell suspension within the test channel (Fig. S2B). After >10 min, a time sufficient to ensure the establishment of the linear gradient (41), we injected mid-exponential-phase cell cultures (OD600 0.5) into the test channel, thus exposing them to the linear chemoattractant profile. Cells were tracked as described above, yielding the distribution of cells along the width of the test channel (i.e., along the chemoattractant gradient). The chemotaxis magnitude was measured by computing the skewness of the cell distribution. We used l-serine, d-glucose, N-acetyl d-glucosamine (GlcNAC), and dimethylsulfoniopropionate (DMSP) as chemoattractants, each at a concentration of 50 μM. Chemotaxis assays with l-serine were performed for all 12 isolates in Table 1, whereas those with d-glucose, GlcNAC, and DMSP were performed with 1 isolate from each population (1F53 and ZF28). Three independent experiments were performed in each case.

Bacterial Behavior Under Time-Varying Nutrient Conditions. Design 2 (Fig. S3A) among the microfluidic gradient generators was used to study bacterial behavior under time-varying nutrient conditions. In this design, only the irrigation channels were located in the PDMS layer, whereas the test channel was in the agarose layer. As in design 1, we created a linear concentration profile within the agarose layer by continuously flowing chemoattractant in one of the two irrigation channels and filtered autoclaved seawater in the other. This time, however, chemoattractant diffused into the test channel through the sidewalls (not the bottom surface) of the test channel (Fig. S3B). In this fashion, the agarose sidewall serves as a model for the surface of a nutrient particle, which releases chemicals and can be colonized by bacteria (Fig. 3 and Fig. S3B). Mid-exponential-phase cells (OD600 0.4) were diluted to

Fig. 4. Model for the tradeoff between the behavioral adaptations of the two V. cyclitrophicus populations. (A) Both populations swim and respond to chemical gradients, but only the L population attaches and forms biofilms on particles, whereas the S population hovers near the surface. (B) When a more nutrient-rich particle appears nearby, only the S population is ready to rapidly respond by migrating to the new source.
OD_5627_0.04 with filtered autoclaved seawater and introduced into the test channel after >10 min from the start of the flow in the irrigation channels to ensure establishment of the gradient. To model a temporal change in the nutrient conditions, 10 min after injecting cells into the test channel, we reversed the direction of the chemotactic gradient by swapping the flows in the two irrigation channels (i.e., swapping chemotactic and filtered autoclaved seawater), so that chemotacticant began to enter the test channel from the surface of the opposite side. Fig. 54 shows the results of a numerical model (SI Materials and Methods) of the time course of the chemotacticant concentration field in the agarose layer and in the test channel, illustrating each of the steps described above. Throughout the experiment, quantification of the cells’ swimming response was performed by video microscopy, as described above. Furthermore, we imaged the association of cells (which expressed GFP) with the agarose sidewalls surface by epifluorescence microscopy using a mercury lamp (X-Cite 120Q; Lumen Dynamics). A 440 nm band-pass filter for excitation, and a 535–550 nm band-pass filter for emission. Experiments were performed with two isolates (1F111-pGFP and ZF270-pGFP) that harbor the GFP-expressing vector pGFP (Table S1), with four independent experiments per isolate (Fig. 3).

Growth-Rate Comparison. Growth on alginate as the sole carbon source was quantified by providing cells with the same total amount of alginate in either particulate (SI Materials and Methods) or dissolved form and comparing the growth rates of isolates on the two forms of alginate. The growth rate (Fig. 1F) of one S (1F111-pGFP) and one L (ZF270-pGFP) isolate was tested in this manner. A mid-exponential-phase culture (OD600 0.5) was washed with fresh medium and diluted to ∼3.0 × 10^6 CFU/mL in minimal medium containing 0.001% (wt/vol) of alginate in soluble or particulate form as the sole carbon source. A 300-μL aliquot was introduced into a test tube and incubated at 30 °C for 13 h. Ten-microliter aliquots were sampled at the start and end of experiments to determine CFU by plate counting, and the number of divisions per hour was then calculated. The minimal medium for these experiments was prepared as previously described (42), with omission of EDTA and addition of a vitamin mix (43). Experiments were performed in triplicate.

Other Methods. Methods describing bacterial isolates, cell-culture protocols, microfabrication, surface-attachment assays, biofilm experiments, swimming-speed measurements, genetic analysis, and substrate-utilization analysis are described in SI Materials and Methods. ACKNOWLEDGMENTS. We thank Katharina Ribbeck for access to confocal microscopy; Anne Heydorn for providing COMSTAT; and Marino Gatto, Renato Casagrandi, and Melissa Garren for comments. Y.Y. was partially supported by the Japanese Society for the Promotion of Science. We acknowledge support from National Science Foundation Grant OCE-0744641-CAREER (to R.S.), National Institutes of Health Grant 1R01GM100473-01 (to R.S.), and Gordon and Betty Moore Microbial Initiative Award No. 3782 (to R.S.).