A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
A 93% Efficiency Reconfigurable Switched-Capacitor DC-DC Converter Using On-Chip Ferroelectric Capacitors

Dina El-Damak, Saurav Bandyopadhyay, Anantha P. Chandrakasan
Massachusetts Institute of Technology, Cambridge, MA

Dynamic Voltage Scaling (DVS) has become one of the standard techniques for energy efficient operation of systems by powering circuit blocks at the minimum voltage that meets the desired performance [1]. Switched Capacitor (SC) DC-DC converters have gained significant interest as a promising candidate for an integrated energy conversion solution that eliminates the need for inductors [2,3]. However, SC converters efficiency is limited by the conduction loss, bottom plate parasitic capacitance, gate drive loss in addition to the overhead of the control circuit. Reconfigurable SC converters supporting multi-gain settings have been proposed to allow efficient operation across wide output range [2,4]. Also, high density deep trench capacitors with low bottom plate parasitic capacitance have been utilized in [5] achieving a peak efficiency of 90%. In this work, we exploit on-chip ferroelectric capacitors (Fe-Caps) for charge transfer owing to their high density and extremely low bottom plate parasitic capacitance [6]. High efficiency conversion is achieved by combining the Fe-Caps with multi-gain setting converter in a reconfigurable architecture with dynamic gain selection.

Figure 21.7.1 shows the top level architecture of the whole power management IC. It consists of reconfigurable switched capacitor DC-DC converter split in four modules (M1-M4) that are interleaved for output voltage ripple reduction [3,4], pulse frequency modulation (PFM) regulation logic, clock generator, gain selection block that include programmable low duty cycle timers, and a voltage reference. The transistor level implementation of the SC module is shown in Figure 21.7.2a which can be reconfigured for four gain settings (1-2/3-1/2-1/3) as shown in Fig. 21.7.2b. Each module consists of two charge transfer capacitors, 1nF each, and ten switches. Since the implementation of gain settings (2/3, 1/3) requires two capacitors while (1,1/2) can be achieved with one only, thus, for the latter each module is reconfigured into two identical sub-modules running with 180 degree phase shifted clocks for further ripple reduction.

The losses due to the bottom plate parasitic capacitance of on-chip capacitors usually limit the peak efficiency of the converter. These losses occur as SC converters supply power to the load through the charge and discharge of flying capacitors (C1 and C2). A direct non-desirable impact to this process is the charge and discharge of the bottom plate parasitic capacitance, \(C_{\alpha} \), every clock cycle [2]. As an example, for gain setting 1/2, the converter charges \(C_2 \) to \((V_{in} - V_{out}) \) in phase 1 and discharges it to \(V_{out} \) in phase 2. In companion to this process the bottom plate capacitance gets charged to \(V_{out} \) and discharged to ground wasting an energy of \(C_{\alpha} V_{out}^2 \) per cycle where \(\alpha \) is technology dependent (the same process applied for capacitor \(C_2 \) but with the reverse order of phases). Highly efficient conversion is achieved by utilizing the ferroelectric capacitors, that possess extremely low bottom plate parasitics, for charge transfer. In addition, the architectures utilized for each gain setting are selected to minimize the voltage swing across the bottom plate capacitors for maximizing efficiency. Since the output load current is directly proportional to the capacity of the flying caps [8], therefore, the Fe-Caps high density allows for supplying the power demands of the load without a highly significant area overhead.

Figure 21.7.3a depicts the control logic for the converter output voltage regulation. The PMC employs a PFM modulation scheme using a Strong-Arm comparator running at \(f_{CLK} \) which is 4 times the maximum desired switching speed, \(f_{sw} \). The comparator output is fed into cascaded clock dividers and non-overlap clock generators for providing the multi-phase control signals for the four modules of the converter [7]. The comparator clock is generated on-chip using a ring oscillator (RO) with external digital calibration. The voltage reference can be provided externally or internally using on-chip reference with embedded resistor string DAC.

Each configuration of the switched capacitor DC-DC converter can supply an output voltage lower than the no-load voltage \(V_{in/3} \) which is equal to the input voltage multiplied by the gain setting [2]. Thus, the converter gain is selected based on the ratio of the reference to the input voltage as shown in Fig. 21.7.3b where the latter is applied to a resistor string to generate three intermediate volt-
Figure 21.7.1: Top level architecture of the Power Management IC (PMIC).

Figure 21.7.2: (a) Transistor level implementation of a single module of the switched capacitor (SC) DC-DC converter (b) Reconfiguration of the SC module for various gain settings (1,2/3,1/2,1/3).

Figure 21.7.3: (a) Pulse Frequency Modulation (PFM) control logic for output voltage regulation of the multi-phased converter (b) Gain select block architecture and timing diagram.

Figure 21.7.4: (a) Measured overall efficiency of the Power management IC (PMIC) while delivering 500μA and 1mA and measured efficiency of the switched-capacitor DC-DC converter alone while delivering 500μA. (b) Measured efficiency the PMIC versus load current while supplying an output voltage of 0.96V at a comparator clock of 8.2MHz.

Figure 21.7.5: Measured load transient performance of the PMIC with a step in the reference voltage from 0.95 V to 0.45 V while showing the gain hopping from 2/3 to 1/3.

Figure 21.7.6: Performance summary and comparison.
Figure 21.7.7: Chip micrograph.