Measurement of $B^{+ \over c}$ Production in Proton-Proton Collisions at $s = 8$TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Aaij, R. et al. "Measurement of $B^{+ \over c}$ Production in Proton-Proton Collisions at $s = 8$TeV." Phys. Rev. Lett. 114, 132001 (April 2015). © 2015 CERN, for the LHCb Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.114.132001</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Dec 13 16:32:43 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/96371</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0</td>
</tr>
</tbody>
</table>
Measurement of B_c^+ Production in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV

R. Aaij et al.*
(LHCb Collaboration)

(Received 12 November 2014; published 2 April 2015)

Production of B_c^+ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of 2.0 fb$^{-1}$ recorded by the LHCb experiment. The ratio of production cross sections times branching fractions between the $B_c^+ \to J/\psi \pi^+$ and $B^+ \to J/\psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_T < 20$ GeV/c and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683 \pm 0.018 \pm 0.009)\%$, where the first uncertainty is statistical and the second systematic.

DOI: 10.1103/PhysRevLett.114.132001

In the standard model, the B_c mesons are the only states formed by two heavy quarks of different flavor, the b and the c quarks. The production of B_c mesons in hadron collisions implies the simultaneous production of $b\bar{b}$ and $c\bar{c}$ pairs; therefore, it is rarer than that of other b mesons. The production of $b\bar{b}$ and $c\bar{c}$ quarkonium states in hadron collisions has been studied for two decades; however, significant puzzles remain [1]. The relative role of competing production mechanisms [2–5] is poorly understood and theory is unable to predict all experimentally observed features [6–11]. The study of B_c production offers a promising way of shedding light over these discrepancies and gaining insight on the underlying physics. In proton-proton (pp) collisions at the Large Hadron Collider (LHC), B_c mesons are expected to be mainly produced through the gluon-gluon fusion process $gg \to B_c + b + \bar{c}$. The production cross sections of the B_c mesons have been calculated in the fragmentation approach [12,13] and in the complete order-α_s^2 approach [14–21], where α_s is the strong-interaction coupling. In the latter approach, the total production cross section of the B_c ground state B_c^+ at a center-of-mass energy of 8 TeV integrated over the whole phase space and including contributions from intermediate excited states is predicted to be about 0.2% [22,23] of the inclusive $b\bar{b}$ cross section [24].

Previously, only the average ratios of B_c^+ to B^+ or B^0 cross sections in specific kinematic regions had been measured [25–27], and double-differential cross sections have not yet been measured. The production cross sections of b hadrons show different transverse momentum dependencies [28–31]. A precise measurement of B_c^+ production as a function of transverse momentum and rapidity will provide useful information on the largely unknown production mechanism of the B_c^+ meson and other bound states of heavy quarks and is also important to guide B_c^+ studies at the LHC.

In this Letter, we report on the first measurement of the ratio of double-differential inclusive production cross sections multiplied by branching fractions,

$$R(p_T,y) = \frac{d\sigma_{B_c^+}(p_T,y)B(B_c^+ \to J/\psi \pi^+)}{d\sigma_B(p_T,y)B(B^+ \to J/\psi K^+)},$$

where transverse momentum p_T and rapidity y refer to the b meson. The cross section includes contributions from excited states. We use a sample of pp collision data at 8 TeV corresponding to an integrated luminosity of 2.0 fb$^{-1}$ recorded by the LHCb experiment. The B_c^+ and B^+ mesons are reconstructed in the exclusive decays $B_c^+ \to J/\psi \pi^+$ and $B^+ \to J/\psi K^+$, respectively, with $J/\psi \to \mu^+\mu^-$. The inclusion of charge conjugate modes is implied throughout this Letter.

The LHCb detector [32] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$ designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The combined tracking system provides a momentum measurement with a relative uncertainty that varies from 0.4% at low momentum p to 0.6% at 100 GeV/c. The minimum distance of a track to a primary vertex, the impact parameter (IP), is measured with a resolution of $(15 + 29/p_T)$ μm, where p_T is in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photon, electron, and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter, and a hadronic calorimeter. Muons are...
identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The trigger consists of a hardware stage based on information from the calorimeter and muon systems, followed by a software stage, in which all charged particles with $p_T > 300$ MeV/c are reconstructed [33]. Events are first required to pass the hardware trigger, which requires one or two muons with high p_T. In the subsequent software trigger, the event is required to have one muon with high p_T and large IP with respect to all primary $p p$ interaction vertices (PVs) or a pair of oppositely charged muons with an invariant mass consistent with the known J/ψ meson mass [34]. Finally, the tracks of two or more of the final state particles are required to form a vertex that is significantly displaced from the PVs. A multivariate algorithm [35] is also used to identify secondary vertices consistent with the decay of a b meson.

The b-meson candidate selection is performed in two steps: a preselection and a final selection on the output of a multivariate classifier based on a boosted decision tree algorithm (BDT) [36,37]. Simulated B^+_c and B^+ decays are used to optimize the b-meson candidate selection. Production of B^+ mesons is simulated using PYTHIA 6.4 [38] with a LHCb specific configuration [39]. The generator BCVEGPy [40] is used to simulate B^*_c-meson production. Decays of B^+_c, B^+, and J/ψ mesons are described by EVTGEN [41], and photon radiation is described by EVTGEN [41], and photon radiation is described by EVTGEN [41], and photon radiation is described by EVTGEN [41]. The decay products are traced through the detector by the GEANT4 package [42]. The decay time is determined by performing an extended maximum likelihood fit of a given primary vertex reconstructed with and without the considered particle. The selection value on the BDT output is chosen to maximize the signal significance $N_S/\sqrt{N_S + N_B}$, where N_S and N_B are the expected numbers of signal and background events, respectively. The same BDT requirements are used for the B^+ meson.

In the preselection, J/ψ candidates are formed from pairs of oppositely charged particles with p_T larger than 0.55 GeV/c, with a good quality of the track fit and identified as muons. The two muons are required to originate from a common vertex. The J/ψ candidates with invariant mass between 3.04 and 3.14 GeV/c^2 are combined with a charged particle that has $p_T > 1.0$ GeV/c, a good quality of the track fit and is separated from any PV. The pion mass hypothesis is assigned to the track for the selection of the B^+_c candidate and the kaon hypothesis for that of the B^+ candidate. The J/ψ candidate and the hadron (π or K) are required to originate from a common vertex.

To improve the b-meson mass resolution, the mass of the muon pair is constrained to the known J/ψ-meson mass [34] in this vertex fit. The b-meson candidates are required to have a decay time larger than 0.2 ps and to point toward the primary vertex.

In the final selection, the BDT is trained using a simulated B^+_c signal sample and background events populating the data mass sideband $6376 < M_{J\psi K^\pm} < 6600$ MeV/c^2. The following variables are used as input to the BDT: χ^2_IP of all particles, p_T of muons, p_T of J/ψ and π^+, and the b-meson decay length, decay time, and the vertex fit χ^2 of a fit to the decay tree [46]. The quantity χ^2_IP is defined as the difference in χ^2 of a given primary vertex reconstructed with and without the considered particle. The selection value on the BDT output is chosen to maximize the signal significance $N_S/\sqrt{N_S + N_B}$, where N_S and N_B are the expected numbers of signal and background events, respectively. The same BDT requirements are used for the B^+ meson.

The B^+_c and B^+ candidates are subdivided into ten bins of p_T and three bins of y. Bin sizes are chosen to contain approximately the same number of signal candidates, except for the highest p_T bin. The differential production ratio R is measured as

$$R(p_T,y) = \frac{N_{B^+_c}(p_T,y)\epsilon_{B^+_c}(p_T,y)}{N_{B^+}(p_T,y)\epsilon_{B^+}(p_T,y)},$$

where $N_{B^+_c}(p_T,y)$ is the number of reconstructed signal decays, and $\epsilon_{B^+_c}(p_T,y)$ is the total efficiency in a given (p_T,y) bin, including geometrical acceptance, reconstruction, selection, and trigger effects.

In each p_T and y bin, the number of signal decays is determined by performing an extended maximum likelihood fit to the unbinned invariant mass distribution

![FIG. 1](color online). Invariant mass distribution of (left) $B^+_c \rightarrow J/\psi \pi^+$ and (right) $B^+ \rightarrow J/\psi K^+$ candidates with $2.0 < p_T < 3.0$ GeV/c and $2.0 < y < 2.9$. The results of the fit described in the text are superimposed.
of B^+_c candidates reconstructed in $6150 < M_{J/\psi \pi} < 6550$ MeV/c^2 and B^+ candidates in $5150 < M_{J/\psi K} < 5550$ MeV/c^2. For both $B^+_c \to J/\psi \pi^+$ and $B^+ \to J/\psi K^+$ decays, the fit includes components for signal, combinatorial background, and Cabibbo-suppressed backgrounds $B^+_c \to J/\psi K^+$ and $B^+ \to J/\psi \pi^+$. Other sources of backgrounds, such as $B^+_c \to J/\psi \mu^+\nu_\mu$, are negligible. The $B^+_c \to J/\psi \pi^+$ signal is described by a double-sided Crystal Ball (DSCB) function, which is an empirical function with a Gaussian core and power-law tails on both sides. The $B^+ \to J/\psi K^+$ signal is described by the sum of two DSCB functions, to account for different mass resolutions in different kinematic regions. The tail parameters are determined from simulation. The combinatorial background is described by an exponential function. The shapes of the Cabibbo-suppressed backgrounds are determined from simulation. The ratios of the yield of the Cabibbo-suppressed background to that of the signal are fixed to the central value of $\mathcal{B}(B^+_c \to J/\psi K^+)/\mathcal{B}(B^+_c \to J/\psi \pi^+)$ = (6.9 ± 2.0)% for B^+_c candidates [47] and $\mathcal{B}(B^+ \to J/\psi \pi^+)/\mathcal{B}(B^+ \to J/\psi K^+)$ = (3.83 ± 0.13)% for B^+ candidates [48], respectively.

As an example, Fig. 1 shows the B^+_c and B^+ mass distributions together with the fit results for the bin $2.0 < p_T < 3.0$ GeV/c and $2.0 < y < 2.9$. The mass resolution is approximately 11 MeV/c^2 for B^+_c signals and 8.7 MeV/c^2 for B^+ signals. Summing over all bins, a total signal yield of 3.1×10^3 B^+_c candidates and 7.1×10^3 B^+ candidates is obtained. In each (p_T, y) bin, the total efficiency is determined from simulation and ranges from 2.4% to 23.2% for B^+_c candidates and from 3.6% to 33.5% for B^+ candidates.

The systematic uncertainties associated with the signal shape in each bin (0.1%–2.6%) are estimated by comparing the ratios between input signal yields and fit results in simulation. The uncertainties from the combinatorial background shape (0.1%–4.4%) are determined by varying the fit function. The input value for the ratio of branching fractions $\mathcal{B}(B^+_c \to J/\psi K^+)/\mathcal{B}(B^+_c \to J/\psi \pi^+)$ is varied within its uncertainty, and the resulting difference (0.1%–0.9%) is taken as systematic uncertainty. The effect of $\mathcal{B}(B^+ \to J/\psi \pi^+)/\mathcal{B}(B^+ \to J/\psi K^+)$ is found to be negligible. The systematic uncertainty associated with the relative trigger efficiency is estimated to be 1%.

Other effects, such as the (p_T, y) binning scheme, the shapes of the Cabibbo-suppressed backgrounds, the B^+_c lifetime uncertainty, and the uncertainty of tracking efficiency, are negligible.

Figure 2 shows that simulation provides a good description of p_T and y distributions of B^+_c mesons in the data. The values of $R(p_T, y)$ in the range $0 < p_T < 20$ GeV/c and $2.0 < y < 4.5$ are shown in Fig. 3 and Ref. [49]. Figure 4 shows the ratio $R(p_T)$ integrated over y in the region $2.0 < y < 4.5$ and $R(y)$ integrated over p_T in the region $0 < p_T < 20$ GeV/c. The ratios are found to vary as a function of p_T and y. The results are compared with the theoretical predictions in Ref. [49].
The resulting integrated value of R in the region $0 < p_T < 20 \text{ GeV}/c$ and $2.0 < y < 4.5$ is measured to be

$$R = (0.683 \pm 0.018 \pm 0.009)\%,$$

where the first uncertainty is statistical and the second systematic. To enable comparison with the previous LHCb measurement [26], R and its total uncertainty are also reported in the range $4 < p_T < 20 \text{ GeV}/c$ and $2.5 < \eta < 4.5$ as $(0.698 \pm 0.023)\%$. The previous LHCb measurement of R at 7 TeV of Ref. [26] is updated using the recent measurement of the B^+_c lifetime [45] to be $(0.61 \pm 0.12)\%$.

In summary, we present the first measurement of the B^+_c double-differential production cross-section ratio with respect to that of the B^+ meson. The measurement is performed in three bins of rapidity and ten bins of p_T in $p\bar{p}$ collisions at $\sqrt{s} = 8 \text{ TeV}$ on a data sample collected with the LHCb detector. The relative production rates of B^+_c and B^+ mesons are found to depend on their transverse momentum and rapidity. The measured transverse momentum and rapidity distributions of the B^+_c meson are well described by the complete order-a_s^4 calculation. However, the theoretical predictions on the B^+_c and B^+ production cross sections suffer from big uncertainties [22,54], and the prediction of the branching fraction of the $B^+_c \to J/\psi \pi^+$ decay has a big spread (see, for example, Ref. [55]); more work on the theoretical side is required to have concluding remarks on the B^+_c absolute production rate. These results will provide useful information on the B^+_c production mechanism and help us understand the quarkonium production and, therefore, deepen our understanding of QCD.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF, and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 computing centers are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (Netherlands), PIC (Spain), and GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEUV, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), and Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom). We would like to thank Matteo Cacciari, Chao-Hsi Chang, Xing-Gang Wu, and Rui-Lin Zhu for useful discussions.

[6] F. Abe et al. (CDF Collaboration), J/ψ and $\psi(2S)$ Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8 \text{ TeV}$, Phys. Rev. Lett. 79, 572 (1997); Production of J/ψ Mesons from χ_c Meson decays in pp Collisions at $\sqrt{s} = 1.8 \text{ TeV}$, Phys. Rev. Lett. 79, 578 (1997).

[26] R. Aaij et al. (LHCb Collaboration), Measurements of $B_c^+\rightarrow J/\psi\pi^+$ Production and Mass with the $B_c^+\rightarrow J/\psi\pi^+$ Decay, Phys. Rev. Lett. 109, 232001 (2012).

[28] T. Aaltonen et al. (CDF Collaboration), First measurement of the ratio of branching fractions $B(\Lambda_c^0 \rightarrow \Lambda_c^0\pi^-\nu)/B(\Lambda_c^0 \rightarrow \Lambda_c^0\pi^+\bar{\nu})$, Phys. Rev. D 79, 032001 (2009).

[30] R. Aaij et al. (LHCb Collaboration), Study of the kinematic dependences of Λ_c^0 production in pp collisions and a measurement of the $\Lambda_c^0 \rightarrow \Lambda_c^0\pi^+$ branching fraction, J. High Energy Phys. 08 (2014) 143.

46 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
47 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
48 Department of Physics, University of Warwick, Coventry, United Kingdom
49 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
50 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
52 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53 Imperial College London, London, United Kingdom
54 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55 Department of Physics, University of Oxford, Oxford, United Kingdom
56 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
57 University of Cincinnati, Cincinnati, Ohio, USA
58 Syracuse University, Syracuse, New York, USA
59 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
60 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
61 Institute of Particle Physics, Tsinghua University, Beijing, China
62 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia
63 Institut für Physik, Universität Rostock, Rostock, Germany
64 National Research Centre Kurchatov Institute, Moscow, Russia
65 Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain
66 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands
67 Celal Bayar University, Manisa, Turkey
68 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
69 Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain
70 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands
71 Also at Université de Genève, Genève, Switzerland.
72 Also at Università di Firenze, Firenze, Italy.
73 Also at Università di Ferrara, Ferrara, Italy.
74 Also at Università della Basilicata, Potenza, Italy.
75 Also at Università di Modena e Reggio Emilia, Modena, Italy.
76 Also at Università di Milano Bicocca, Milano, Italy.
77 Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
78 Also at Università di Bologna, Bologna, Italy.
79 Also at Università di Roma Tor Vergata, Roma, Italy.
80 Also at Università di Genova, Genova, Italy.
81 Also at Scuola Normale Superiore, Pisa, Italy.
82 Also at Politecnico di Milano, Milano, Italy.
83 Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
84 Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
85 Also at Università di Padova, Padova, Italy.
86 Also at Università di Cagliari, Cagliari, Italy.
87 Also at Hanoi University of Science, Hanoi, Viet Nam.
88 Also at Università di Bari, Bari, Italy.
89 Also at Università degli Studi di Milano, Milano, Italy.
90 Also at Università di Roma La Sapienza, Roma, Italy.
91 Also at Università di Pisa, Pisa, Italy.
92 Also at Università di Urbino, Urbino, Italy.
93 Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.