MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scaling of ultrafast photon-triggered field emission cathodes composed of arrays of sharpened single-crystal Si pillars

Author(s)
Dong, Chen Dan
Thumbnail
DownloadFull printable version (7.205Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Luis F. Velásquez-García.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ultrafast (<1 ps-long pulses) cathodes with spatially structured emission are an enabling technology for exciting applications such as free-electron lasers, tabletop coherent x-ray sources, and ultrafast imaging. In this thesis, we explore the scaling down and multiplexing limits of ultrafast photon-triggered field emission cathodes composed of arrays of nano-sharp high-aspect-ratio silicon pillars. We are interested in exploring how the geometry of the array and the morphology of the pillars affect the emission of the electrons. Both the multi-photon regime and the strong-field tunneling regime of the emission process were studied using near-IR pulses at various pulse energies. We model the structure using 2D and 3D COMSOL Multiphysics, collect the charge-energy characteristics of the actual devices, compare and interpret the results from both simulations and experiments. We find that the field factor is a strictly increasing function of the pitch at the fixed height, and the field factor saturates when the pitch is very large. The field factor is also strictly increasing with respect to the height with a diminishing return. In addition, due to the trade-off between the field factor and the pitch scaling, there exists an optimum pitch at 2.5 [mu]m, which yields the highest emission of electrons. This work also confirms earlier work by the group on the emission characteristics and polarization dependence: at low pulse energy, the emission is in the multiphoton regime and has an sin² ([theta]) dependence on the polarization; at high pulse energy, the emission is in the strong-field tunneling regime and has an sin²([theta]) dependence on the polarization.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 53-55).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/100329
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.