Show simple item record

dc.contributor.advisorRuss Tedrake.en_US
dc.contributor.authorLandry, Benoit, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-01-04T19:58:17Z
dc.date.available2016-01-04T19:58:17Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/100608
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 69-71).en_US
dc.description.abstractPrevious demonstrations of autonomous quadrotor flight have typically been limited to sparse environments due to the computational burden associated with planning for a large number of obstacles. We hypothesized that it would be possible to do efficient planning and robust execution in obstacle-dense environments using the novel Iterative Regional Inflation by Semidefinite programming algorithm (IRIS), mixed-integer semidefinite programs (MISDP), and model-based control approaches. Here, we present experimental validation of this hypothesis using a small quadrotor in a series of indoor environments including a cubic meter volume containing 20 interwoven strings. We chose one of the smallest hardware platforms available on the market (34g, 92mm rotor to rotor), allowing for these dense environments and explain how to overcome the many system identification, state estimation, and control problems that result from the small size of the platform and the complexity of the environments.en_US
dc.description.statementofresponsibilityby Benoit Landry.en_US
dc.format.extent71 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titlePlanning and control for quadrotor flight through cluttered environmentsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc932228932en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record