Show simple item record

dc.contributor.advisorTimothy M. Swager.en_US
dc.contributor.authorJeon, Intaken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2016-03-25T13:31:15Z
dc.date.available2016-03-25T13:31:15Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101797
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 59-62).en_US
dc.description.abstractSingle layer graphene is a nearly transparent two-dimensional honeycomb sp2 hybridized carbon lattice, and has received immense attention for its potential application in next-generation electronic devices, composite materials, and energy storage devices. This attention is a result of its desirable and intriguing electrical, mechanical, and chemical properties. However, mass production of high-quality, solution-processable graphene via a simple low-cost method remains a major challenge. Recently, electrochemical exfoliation of graphite has attracted attention as an easy, fast, and environmentally friendly approach to the production of high-quality graphene. This route solution phase approach complements the original micromechanical cleavage production of high quality graphite samples and also involved a chemically activated intermediate state that facilitates functionalization. In this thesis we demonstrate a highly efficient electrochemical exfoliation of graphite in organic solvent containing tetraalkylammonium salts, avoiding oxidation of graphene and the associated defect generation encountered with the broadly used Hummer's method. The expansion and charging of the graphite by intercalation of cations facilitates the functionalization of the graphene basal surfaces. Electrochemically enhanced diazonium functionalization of the expanded graphite was performed. The exfoliated graphene platelets were analyzed by Raman spectroscopy, to quantify defect states and the degree of exfoliation. Additional microscopy techniques provided additional insight into the chemical state and structure of the graphene sheets.en_US
dc.description.statementofresponsibilityby Intak Jeon.en_US
dc.format.extent62 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleSynthesis of functionalized few layer graphene via electrochemical expansionen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc943060711en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record