Show simple item record

dc.contributor.advisorNeri Oxman.en_US
dc.contributor.authorKlein, John, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Architecture. Program in Media Arts and Sciences.en_US
dc.date.accessioned2016-03-25T13:38:44Z
dc.date.available2016-03-25T13:38:44Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101831
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 90-92).en_US
dc.description.abstractThe thesis presents an Additive Manufacturing Enabling Technology for Optically Transparent Glass. The platform builds on existing manufacturing traditions and introduces new dimensions of novelty across scales by producing unique structures with numerous potential applications in product-, and architectural-design. The platform is comprised of scalable modular elements able to operate at the high temperatures required to process glass from a molten state to an annealed product. The process demonstrated enables the construction of 3D parts as described by Computer Aided Design (CAD) models. Processing parameters such as temperature, flow rate, layer height and feed rate, can be adjusted to tailor the printing process to the desired component; its shape and its properties. The research explores, defines and hard-codes geometric constraints and coiling patterns as well as the integration of various colors into the current controllable process, contributing to a new design and manufacturing space. Performed characterization of the printed material to determine its morphological, mechanical and optical properties, is presented and discussed. Printed parts demonstrated strong adhesion between layers and satisfying optical clarity. The molten glass 3D printer as well as the fabricated objects exhibited, demonstrate the production of parts which are highly repeatable, enable light transmission, and resemble the visual and mechanical performance of glass constructs that are conventionally obtained. Utilizing the optical nature of glass, complex caustic patterns were created by projecting light through the printed objects. The 3D printed glass objects and process described here, aim to contribute new capabilities to the ever-evolving history of a very challenging but limitless material - glass.en_US
dc.description.statementofresponsibilityby John Klein.en_US
dc.format.extent96 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectArchitecture. Program in Media Arts and Sciences.en_US
dc.titleAdditive manufacturing of optically transparent glassen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
dc.identifier.oclc941802277en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record