Show simple item record

dc.contributor.advisorDirk Englund.en_US
dc.contributor.authorFoy, Christopher, Ph. D. (Christopher C.) Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-07-18T20:06:11Z
dc.date.available2016-07-18T20:06:11Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103750
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 83-88).en_US
dc.description.abstractThe nitrogen vacancy center (NV) is a promising single spin system in diamond with optical polarization, readout and optically detected magnetic resonances (ODMR). The NV has been shown to be a sensitive magnetometer at room temperature. In particular, owing to their small size, NV centers in nanocrystals (nanodiamonds) offer magnetic field imaging with high spatial resolution. Competitive magnetic field imaging methods such as magnetic force microscopy (MFM) or superconducting quantum interference devices (SQUID) either image serially, and are thus slow, or are limited in their use for biological systems. Nanodiamonds in contrast have the advantage that they can be attached to biological tissues in vivo and can be imaged in parallel at high speeds. Unfortunately, nanodiamonds tend to aggregate due to Coulomb interactions of their surface species. This aggregation results in a inhomogeneous broadening of the NV's ODMR with applied magnetic field. This broadening makes imaging magnetic fields non-trivial. In this work, we present a model to understand aggregated nanodiamonds. Despite NVs with defined crystallographic orientations demonstrating vectorial resolution of magnetic fields, this model predicts that aggregated nanodiamonds should be treated as absolute magnetometers. Further, a sparse sampling protocol is implemented that enables time resolved magnetometry and is used to image the magnetic field of a current carrying wire at greater than 33 Hz speeds with magnetic field sensitivities better than ... over a 10 [mu]m x 10 [mu]m field of view.en_US
dc.description.statementofresponsibilityby Christopher Foy.en_US
dc.format.extent88 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleWide-field magnetic field imaging with nitrogen vacancy centers in nanodiamonds at high frame-ratesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc953583409en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record