Show simple item record

dc.contributor.advisorChristopher A. Schuh.en_US
dc.contributor.authorHuang, Ting-Yun Sashaen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2016-09-13T18:05:39Z
dc.date.available2016-09-13T18:05:39Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104107
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 113-122).en_US
dc.description.abstractNanocrystalline alloys have attracted interest for decades because of their improved mechanical strength without sacrificing ductility, but structural stability has always been an issue. In this work, bulk aluminum-manganese (Al-Mn) nanocrystalline alloys have been synthesized using room temperature ionic liquid electrodeposition, by which various nanostructures and dual-phase structures can be created by controlling the Mn solute incorporation level. The manganese exhibits grain boundary segregation in the Al-Mn solid solution in the as-deposited condition, which contributes to enhanced stability of the nanostructure. The grain boundary properties of the nanostructured alloys were studied via three dimensional atom probe tomography and aberration-corrected scanning electron microscopy. The segregation energies were calculated based on the experimental results and compared with the values calculated from a thermodynamic-based segregation model. Upon heating of the nanostructured and dual-phase alloys, a variety of complex phase transformations occur. A combination of X-ray diffraction, transmission electron microscopy, as well as differential scanning calorimetry were employed to understand the phase transformation mechanisms and grain growth processes. A Johnson-Mehl-Avrami-Kolmogorov analytical model was proposed as a descriptive method to explain the phase transformation sequence. Using the parameters extracted from the analytical model, predictive time-temperature transformation diagrams were constructed. The stability region of the alloy in time-temperature space is thus established, providing a simple way to evaluate nanostructure stability.en_US
dc.description.statementofresponsibilityby Ting-Yun Sasha Huang.en_US
dc.format.extent122 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleStability of nanostructured : amorphous aluminum-manganese alloysen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc958135441en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record