Show simple item record

dc.contributor.advisorPeter P. Belobaba.en_US
dc.contributor.authorEscovar Álvarez, Germánen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2016-09-13T18:07:03Z
dc.date.available2016-09-13T18:07:03Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104120
dc.descriptionThesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 175-176).en_US
dc.description.abstractThe selection of an aircraft type has long term effects on the competitive position of the airline. In a market that is continuously evolving, such as the commercial aviation industry, any degree of flexibility for adjusting an aircraft capacity to match better the demand provides an opportunity for airlines to remain profitable when conditions have changed. This thesis focuses on airlines operating dual cabin aircraft (premium and economy cabins) and explores two alternatives that can be used to adjust the capacity made available to maximize revenues. On the one hand, an easily implementable strategy of premium cabin capacity sharing is proposed with the intention of allowing passengers booking in economy fare classes to be accommodated in premium cabin seats when these seats are expected to be empty. On the other hand, a medium to long-term solution of changing the aircraft configuration (through aircraft replacement or retrofit) is considered. Both alternatives are tested using simulation tools that incorporate revenue management concepts and passenger decision making. Four heuristics are developed and tested to evaluate premium cabin capacity sharing. Based on the simulations, it is found that the methodologies proposed can generate total revenue gains of up to 1.1%. Nevertheless, two caveats are identified: first, losses in the revenue captured from premium fare classes are likely to be experienced due to displacement by economy fare class passengers. Second, premium cabin capacity sharing should only be implemented in the final stages of the booking process; otherwise, the sharing heuristics could result in revenue losses for the airline. With respect to cabin configuration analysis, an analytical model based on the Boeing-Swan Spill Model (BSM) is applied to dual cabin aircraft and is used to estimate the impacts on revenue due to a change in configuration. These results are compared to the results of the simulations and it is found that the BSM is able to predict in most cases whether the configuration change will generate revenue gains or losses for the airline. However, estimates of the dual cabin BSM ignore the interaction between passengers of both cabins, leading to incorrect estimates of load factors and average revenue values of spilled or accommodated passengers.en_US
dc.description.statementofresponsibilityby Germán Escovar Álvarez.en_US
dc.format.extent176 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleCapacity management schemes for dual cabin aircraft : airline revenue management insightsen_US
dc.title.alternativeAirline revenue management insightsen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Transportationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc958137593en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record