Show simple item record

dc.contributor.advisorRuben Juanes.en_US
dc.contributor.authorScandella, Benjamin P. (Benjamin Paul)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2016-09-13T18:11:09Z
dc.date.available2016-09-13T18:11:09Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104157
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 130-140).en_US
dc.description.abstractMethane is a potent greenhouse gas, and natural sources to the atmosphere include inland waterways and shallow oceans. However, the magnitude of these emissions and their potential for feedbacks with climate change remain poorly constrained. In many settings the majority of atmospheric methane emissions is delivered by bubbles, and the spatiotemporal heterogeneity of ebullition makes measurement challenging and impacts bubble dissolution and atmospheric emissions. In this thesis, we present an analysis of both the episodicity and spatial structure of methane venting from soft sediments in a eutrophic lake over a range of spatial scales, from 1 cm to 20 m, and using a combination of field observations and laboratory experiments. Field-scale measurements of ebullition were acquired at the bottom of Upper Mystic Lake, MA, USA, using a high-resolution multibeam sonar during multiple deployments over a 9-month period. The sonar was calibrated to estimate the gas flow rates throughout a 330 m2 lateral observation area with resolution of 0.5 m. The results confirm that ebullition is strongly episodic, with distinct regimes of high- and low-flux largely controlled by changes in hydrostatic pressure. Statistical analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over timescales of hours (for high-flux periods) or days (for low-flux periods), demonstrating that meter-scale methane vents are ephemeral rather than persistent. Laboratory-scale measurements were made in a controlled incubation of reconstituted sediments from the same field site. Image analysis of the 0.14 m2 observation area allowed identification of individual bubble outlets and resolved their location to ~ 1 cm. While ebullition events were typically concentrated in bursts lasting ~ 2 min, some major outlets showed persistent activity over the scale of days and even months. This persistence was surprising given the ephemerality of spatial structure at the field-scale. It suggests that, at the centimeter scale, conduits are re-used as a result of a drop in tensile strength due to deformation of sediments by the rising bubbles. By combining novel measurement techniques at different scales, we elucidate the mechanisms governing bubble growth and mobility, thereby supporting estimates of global methane fluxes from lakes and how their magnitude may vary with climate change.en_US
dc.description.statementofresponsibilityby Benjamin Paul Scandella.en_US
dc.format.extent140 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleSpatiotemporal variability of methane ebullition from lake sedimentsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc958280487en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record