Show simple item record

dc.contributor.advisorYang Shao-Horn.en_US
dc.contributor.authorKarayaylali, Pinaren_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-09-13T19:21:45Z
dc.date.available2016-09-13T19:21:45Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104288
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 104-110).en_US
dc.description.abstractLithium ion batteries are the currently the best commercial battery in the market and they are used as energy storage devices for mobile phones, laptops, and other portable electronic devices. This is due to their balance of high energy density with high power density compared to other electrochemical energy devices. Also, these days the automotive industry wants to use lithium ion batteries to electric vehicles to reduce the pollution and independence to oil. Although lithium ion batteries are currently one of the best energy storage devices, there is still an ample room for improvement. One of the key parameters to study is electrode/electrolyte interface of electrodes. EEI on the negative electrode, also known as Solid Electrolyte Interphase (SEI) has the well-known structure with organic and inorganic compounds. Although EEI on negative electrodes is well known, it is not the case for positive electrodes. Numerous studies have been done on positive electrodes; however, there is still a need for systematic study of these interfaces on positive electrodes. This thesis is about understanding the reactivity and interactions of Li-ion battery positive electrode materials with the electrolyte. By understanding reactions at the EEI, we can develop a way to improve cycle life and safety of lithium ion batteries. To unambiguously pinpoint the electrode/electrolyte interface layers on different positive electrode materials, 100 % active materials are used as positive electrodes instead of composite electrodes.en_US
dc.description.statementofresponsibilityby Pinar Karayaylali.en_US
dc.format.extent110 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleUnderstanding electronic structure and interfaces of positive electrodes for lithium ion batteriesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc958162551en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record