MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Protein structure and interaction under environmental stress : from quality control recognition to evolution of collective behavior

Author(s)
Brock, Kelly Paige
Thumbnail
DownloadFull printable version (14.77Mb)
Other Contributors
Massachusetts Institute of Technology. Computational and Systems Biology Program.
Advisor
Jeremy England.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A protein's function in the cell depends on its structure, which in turn depends on the intracellular environment. Stress like heat shock or nutrient starvation can alter intracellular conditions, leading to protein misfolding - i.e. the inability of a protein to reach or maintain its native conformation. Since many proteins interact with each other, protein misfolding and cellular stress response must be examined both on the scale of individual protein conformational changes and on a more global level, where interaction patterns can reveal larger-scale protein responses to cellular stress. On the individual scale, one example of a protein particularly susceptible to misfolding is the human von Hippel-Lindau (VHL) tumor suppressor. When expressed in the absence of its cofactors, VHL cannot fold correctly and is quickly degraded by the cell's quality control machinery. Here, I present a biophysical characterization of a VHL mutation that confers increased resistance to misfolding. Mathematical modeling provides an explanation for this mutant's increased stability in the cell by predicting how its cofactor and chaperone interaction sites are buried or exposed in the protein's predicted conformation. On a more global level, a budding yeast cell undergoing glucose deprivation both acidifies its cytosol and exhibits widespread protein clustering. By employing a proteome-wide computational assay, I examine how this drop in pH could lead to the formation of higher order protein structures. This modeling framework also provides a rationale for why these two related phenotypes might be beneficial, since protein clustering can help regulate relevant metabolic pathways and provide protection from protein misfolding and/or degradation.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Computational and Systems Biology Program, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104575
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program
Publisher
Massachusetts Institute of Technology
Keywords
Computational and Systems Biology Program.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.