MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and testing of a flexible exoskeleton-to-shoe interface

Author(s)
Leibowitz, Dalia
Thumbnail
DownloadFull printable version (7.188Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Hugh Herr.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A lightweight minimalist lower-limb exoskeleton has been designed that reduces the metabolic cost of walking. Currently, this exoskeleton must be permanently attached to a shoe; holes are drilled into each new shoe used, a practice that is neither flexible nor cost-effective. A new attachment system is proposed to temporarily but securely connect the exoskeleton to shoes of various sizes. This exoskeleton-to-shoe interface is lightweight, adjustable for various shoe sizes, and easy to attach and remove. This interface is meant to increase the testing flexibility and commercial potential of the exoskeleton. After the interface was designed and built, the stiffness of the interface was measured and compared to the stiffness of the original rigid attachment. The stiffness was calculated using exoskeleton torque and the corresponding angle of attachment. Torque was calculated based on force applied by the exoskeleton, and the time-varying angle was found using motion capture. The results of these measurements suggest that at the tested frequencies of 0.5, 1, and 2 Hz the stiffness of the exoskeleton-to-shoe interface, which ranged from 8.082 Nm/° to 16.94 Nm/°, is greater than the stiffness of the control, which ranged from 6.143 Nm/° to 6.957 Nm/°. At all tested frequencies, the interface stiffness remained equal to or greater than the natural ankle stiffness during level ground walking. Since the interface stiffness is greater than the natural ankle stiffness, this flexible interface has acceptable stiffness. A flexible, lightweight, and size-variable exoskeleton-to-shoe interface with higher than natural ankle stiffness has the potential to be useful in both future research and eventual commercialization of the exoskeleton.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 40).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105692
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.