MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of on-chip monitoring circuits for clock delay and temperature

Author(s)
Kakuru, George Bamuturaki
Thumbnail
DownloadFull printable version (3.659Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Charles G. Sodini, Jeremy Walker, and Andrew Lewine.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As devices continue to scale, Process, Voltage and Temperature (PVT) variations tend to have a bigger impact on circuit performance. The ability to measure this impact provides essential knowledge about the circuit's current performance and opens the door to compensation techniques. Off-chip measurement circuits are usually of limited bandwidth and load the measured circuit, thus affecting the measurement result. Onchip circuits on the other hand have the potential for high bandwidth and, if designed well, have small area and can be incorporated into different parts of the chip. For this project a delay and temperature measurement circuit is designed. The delay measurement circuit relies on a method called Code Density Test (CDT), a statistical method which involves counting the number of asynchronous edges that occur within the relative delay of two synchronous clocks. The temperature measurement circuit converts temperature to a delay which can then be measured by the CDT circuit.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 81-82).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105997
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.