MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational treatments for neutron resonance elastic scattering in Monte Carlo nuclear simulations

Author(s)
Tran, Vivian Y
Thumbnail
DownloadFull printable version (9.224Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Benoit Forget.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Simulations are vital to the safe design and operation of nuclear reactors. It is therefore important that they accurately treat the physics of nuclear interactions. This work investigates the phenomenon of neutron resonance scattering with a moving target, which can affect the post-collision properties of the neutron and macroscopic values such as temperature reactivity coefficients. First, this research validates a faster computational treatment for resonance scattering--the accelerated resonance elastic scattering (ARES) kernel sampling method--against the already verified Doppler broadening rejection correction (DBRC) treatment in the open-source OpenMC Monte Carlo neutron transport code being developed at the Massachusetts Institute of Technology. In an effort to improve computational efficiency, the optimal energy limits where this phenomenon should be treated are determined and compared to the less costly but inaccurate approximation of assuming a constant constant cross section for determining the reaction kinematics. To reduce memory requirements and facilitate coupling with heat transfer, a new data representation was recently adopted in OpenMC based on the multipole formalism. However, this new approach invalidates the previous implementations of DBRC and ARES. This thesis thus developed a modified DBRC algorithm compatible with the new data representation. This new method is also validated against the previous DBRC method. While more computationally costly, the use of the multipole representation in treating resonance scattering reduces memory requirements by a hundred-fold and facilitates the representation of temperature dependent cross sections.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 58-60).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106693
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.