MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Beating the world's best at Super Smash Bros. with deep reinforcement learning

Author(s)
Firoiu, Vlad
Thumbnail
DownloadFull printable version (1.454Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Joshua B. Tenenbaum.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
There has been a recent explosion in the capabilities of game-playing artificial intelligence. Many classes of RL tasks, from Atari games to motor control to board games, are now solvable by fairly generic algorithms, based on deep learning, that learn to play from experience with often minimal knowledge of the specific domain of interest. In this work, we will investigate the performance of these methods on Super Smash Bros. Melee (SSBM), a popular multiplayer fighting game. The SSBM environment has complex dynamics and partial observability, making it challenging for man and machine alike. The multiplayer aspect poses an additional challenge, as the vast majority of recent advances in RL have focused on single-agent environments. Nonetheless, we will show that it is possible to train agents that are competitive against and even surpass human professionals, a new result for the video game setting..
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 29).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/108984
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.