Show simple item record

dc.contributor.authorClements, E. B.
dc.contributor.authorCarlton, A. K.
dc.contributor.authorJoyce, C. J.
dc.contributor.authorSchwadron, N. A.
dc.contributor.authorSpence, H. E.
dc.contributor.authorSun, X.
dc.contributor.authorCahoy, K.
dc.date.accessioned2017-08-15T18:37:29Z
dc.date.available2017-08-15T18:37:29Z
dc.date.issued2016
dc.identifier.issn15394956
dc.identifier.urihttp://hdl.handle.net/1721.1/110954
dc.description.abstractSpace weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).en_US
dc.language.isoen_USen_US
dc.publisherSpace Weather: The International Journal of Research & Applicationsen_US
dc.titleInterplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance.en_US
dc.typeArticleen_US
dc.identifier.citationClements, E. B., Carlton, A. K., Joyce, C. J., Schwadron, N. A., Spence, H. E., Sun, X., & Cahoy, K. (2016). Interplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance. Space Weather: The International Journal Of Research & Applications, 14(5), 343. doi:10.1002/2016SW001381en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record