Show simple item record

dc.contributor.advisorEvelyn N. Wang.en_US
dc.contributor.authorRubin, Julia G. (Julia Grace)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2017-09-15T15:30:10Z
dc.date.available2017-09-15T15:30:10Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111347
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 32).en_US
dc.description.abstractCurrent solar to thermal energy conversion technologies, including concentrated solar power (CSP) and solar water heaters (SWH) utilize absorber surfaces that collect incident solar radiation. However, these absorber surfaces emit thermal energy (at their temperature) in the infrared (IR) spectrum, resulting in decreased overall efficiency for solar-to-thermal conversion. Selective absorber surfaces are highly absorptive in the solar spectrum, yet highly reflective in the infrared spectrum and therefore have the potential to minimize thermal energy loss. Copper Oxide (CuO) nanostructures are a candidate selective absorber material due to high absorptivity in the solar spectrum (about 95%), relatively high reflectance in the IR spectrum, scalability, and ease of fabrication. The aim of this study was to analyze optical properties and thermal stability of CuO surfaces in order to assess its feasibility as a selective absorber material. CuO nanostructures were synthesized on copper via chemical wet processing. Samples were thermally cycled to simulate day/night cycles in a typical SWH application. A cycle consisted of 12 hours of heating at 200°C and 12 hours of cooling to ambient temperature. Samples were cycled 1, 2, 3, 8, and 10 times. Surface optical properties were characterized using Ultraviolet-Visible Spectroscopy (UV-Vis) and Fourier Transform Infrared Spectroscopy (FTIR) and compared to optical properties of Pyromark®, the industry standard. Reflectance in the IR spectrum of CuO samples was found to increase after initial heating, whereas the absorptivity decreased. This tradeoff in optical performance resulted in an overall efficiency that remained relatively stable between 0 and 10 cycles (69.5±1.6%, 70.2±1.6%, respectively). CuO samples were found to be roughly 10% more efficient (optical conversion) than Pyromark® (npyromark,3x = 59.5±0.7%), indicating that CuO samples have the potential to be an efficient selective absorber material.en_US
dc.description.statementofresponsibilityby Julia G. Rubin.en_US
dc.format.extent32 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleSelective solar absorber materials : nanostructured surfaces via scalable synthesisen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc1003291028en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record