Show simple item record

dc.contributor.advisorKamal Youcef-Toumi and Scott Keating.en_US
dc.contributor.authorCaetano, Sean Michaelen_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2017-09-15T15:35:54Z
dc.date.available2017-09-15T15:35:54Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111477
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2017.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 87-88).en_US
dc.description.abstractAs aerospace Original Equipment Manufacturer's (OEM's) order backlogs soar to between six to ten years and growing, the community sees automation as vital to increasing throughput. Yet the community seems divided on the quantifiable financial benefits. While automation in aerospace assembly dates back to 1937, there is little substantive research on quantifying its business case. This thesis develops a financial model that predicts the benefit of introducing automation into an OEM's manual assembly line. The hypothesis of this project is that there is, in fact, a quantifiable benefit to implementing assembly automation into a current manual assembly process. Based on an initial automation capital investment, the financial model calculates the Net Present Value (NPV) of an aerospace automation project given various OEM production inputs such as: the annual production schedule, learning curve metrics, labor hour savings through automation, rework, health & safety metrics, and automation operating and downtime costs. A current program was used as a case study against the financial model. One significant finding is the effect production learning has on the labor hours saved from automation introduced in this thesis as the 'Efficiency Factor'. Based on the OEM's conservative production data and an initial automation investment of $12M the NPV for the project is about $16M for the firm order (600 ship sets) and about $27M for the entire program (2000 ship sets).en_US
dc.description.statementofresponsibilityby Sean Michael Caetano.en_US
dc.format.extent121 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleQuantifying the business case for aerospace assembly automationen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1003322147en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record