Show simple item record

dc.contributor.advisorMarc A. Baldo.en_US
dc.contributor.authorDutta, Sumit, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-10-30T15:03:39Z
dc.date.available2017-10-30T15:03:39Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111997
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 109-120).en_US
dc.description.abstractThe ever-increasing demand for high-performance and low-power computing warrants an investigation of technologies beyond conventional digital transistor circuits. We explore a logic device based on magnetic domain walls, which are electrically movable boundaries between oppositely magnetized domains of a wire, for applications to hardware acceleration. A domain wall logic device takes current on the input, which moves a magnetic domain wall to a position in a ferromagnetic wire, and this position is the nonvolatile data token read as an output current through a magnetic tunnel junction. The spatial resolution of discrete magnetic domain wall positions in domain wall logic devices is studied to guide memory and logic applications. Theory, numerical modeling, and experiments on in-plane and perpendicularly magnetized materials demonstrate that the bit resolution, or analog information capacity, of a magnetic nanowire with a single domain wall is limited by the self-affine statistics of the wire edge roughness. The domain wall logic device is extended further into functional design implementations, including a logic-in-memory architecture to perform deep convolutional neural network operations in a hybrid process with magnetic devices and 45 nm CMOS. A 3-terminal magnetic logic device is designed to have a 3-bit resolution, and is used in conjunction with transistors in circuit designs for an ecient logic-in-memory system that can process convolutional neural networks 10 faster than conventional digital CMOS implementations.en_US
dc.description.statementofresponsibilityby Sumit Dutta.en_US
dc.format.extent120 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleMagnetic logic circuits with high bit resolution for hardware accelerationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1006378330en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record