Show simple item record

dc.contributor.advisorEvelyn N. Wang.en_US
dc.contributor.authorPreston, Daniel J. (Daniel John)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2018-01-12T21:15:07Z
dc.date.available2018-01-12T21:15:07Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113167
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 68-79).en_US
dc.description.abstractVapor condensation is routinely used as an effective means of transferring heat or separating fluids for applications ranging from personal electronic device thermal management to natural gas processing and electric power generation. Filmwise condensation, where the condensed fluid forms a liquid film, is prevalent in typical industrial-scale systems. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets, results in an improvement in heat transfer performance of up to an order of magnitude compared to filmwise condensation. We explored rare earth oxides (REOs) as a potential coating to induce dropwise condensation of water; specifically, we experimentally demonstrated that the mechanism for REO hydrophobicity results from adsorption of contaminants from the atmosphere. We also used graphene, which is hydrophobic in nature, as a coating to achieve robust dropwise water condensation. With a graphene coating, we demonstrated a 4x improvement in water condensation heat transfer compared to filmwise condensation with robustness superior to state-of-the-art hydrophobic monolayer coatings. Meanwhile, low surface tension condensates pose a unique challenge since they often form a film, even on hydrophobic coatings. Lubricant infused surfaces (LIS) represent a potential solution, where a lubricant immiscible with the low surface tension condensate is infused into a rough structure on the condenser surface to repel the condensate. We developed a detailed surface-energy-based model to provide design guidelines for any arbitrary LIS system. We then characterized heat transfer coefficients during condensation of low surface tension fluids on LIS in a controlled environmental chamber for the first time, where a 5x improvement was demonstrated compared to filmwise condensation. The improved condensation heat transfer coefficients realized by LIS for low surface tension fluids and by REOs and graphene for water present opportunities for significant energy savings in device thermal management, heating and cooling, and power generation.en_US
dc.description.statementofresponsibilityby Daniel John Preston.en_US
dc.format.extent125 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleEnhanced condensation heat transfer for water and low surface tension fluidsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1016158461en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record