MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact modification of Mercury's mantle composition

Author(s)
Wahl, Sean M
Thumbnail
DownloadFull printable version (4.833Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
Linda T. Elkins-Tanton.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Difficulties encountered in reproducing Mercury's compositional attributes through modeling of formational processes have bolstered support for the hypothesis that one or more giant impacts stripped away a significant proportion of proto-Mercury's silicate mantle. Previous investigations demonstrate sufficient removal of mantle material to account for the planets unusually high mean density, but do not consider the effects of multiple silicate and oxide phases. In this study, we extend the present theory by investigating the consequences of a more realistic chemical model on the evolution of the ejected material. We suggest that the majority of condensation within the expanding vapor plume can be modeled as an equilibrium process following homogeneous nucleation of refractory phases leading to larger particle sizes than previously estimated. We use a thermodynamic model focused on major element composition of ejected material to analyze the effect of differential condensation on the expansion and final state of ejecta. We also adapt pre-existing models for chemistry of condensation and impact shock compression to address additional problems associated with the process. For ejecta of sufficiently high specific entropy, our simplified chemical models indicate that energy released during condensation of MgO-rich phases buffers the temperature, delaying or preventing onset of FeO condensation. If sufficient spatial separation between condensates and vapor arises or if significant amounts of uncondensed FeO vapor remain uncondensed, reaccumulated ejecta would be enriched in MgO and refractory phases. This is compatible with an FeO depletion of Mercury's surface relative to other terrestrial bodies as some spectroscopic data suggests. The proposed process leads to a greater depletion in FeO and a lesser depletion in refractory, incompatible elements (Al2 O3, CaO, TiO2 ), than models assuming uniform removal of material from a differentiated proto-Mercury.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 53-57).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/114355
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.