Show simple item record

dc.contributor.advisorDirk R. Englund.en_US
dc.contributor.authorLee, Catherine, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-05-23T16:33:57Z
dc.date.available2018-05-23T16:33:57Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115768
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 129-143).en_US
dc.description.abstractQuantum key distribution (QKD) exploits the inherent strangeness of quantum mechanics to improve secure communication, enabling two pre-authenticated participants to establish symmetric encryption keys over long distances, without making any assumptions about the computational abilities of an adversary. QKD commonly relies on the transmission and detection of single photons to distribute the secret keys, but the secret-key generation rates are often limited by hardware, namely the ability to produce or detect nonclassical states of light. We address this challenge by using high-dimensional encoding to increase the secure information yield per detected photon. In this thesis, we present security analysis for and the first demonstrations of a resource-efficient high-dimensional QKD protocol, including two varieties of implementation that each have different strengths and weaknesses. We introduce a 42-km deployed fiber testbed that we use to demonstrate our high-dimensional QKD protocol. We also demonstrate the violation of a steering inequality, confirming that we can produce entanglement in the lab and distribute it over the deployed fiber. By these experiments, we demonstrate both the utility of our high-dimensional QKD protocol and the feasibility of our testbed for further applications in quantum communication and networking.en_US
dc.description.sponsorshipSupported by the DARPA Information in a Photon program from the Army Research Office W911NF-10-1-0416 Support by the Columbia Optics and Quantum Electronics IGERT under NSF DGE-1069420en_US
dc.description.statementofresponsibilityby Catherine Lee.en_US
dc.format.extent143 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleHigh-dimensional quantum communication over deployed fiberen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1036987537en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record