Show simple item record

dc.contributor.advisorEvelyn N. Wang.en_US
dc.contributor.authorLu, Zhengmaoen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2018-10-22T18:46:28Z
dc.date.available2018-10-22T18:46:28Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118723
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 82-87).en_US
dc.description.abstractEvaporation, a commonly found phenomenon in nature, is widely used in thermal management, water purification, and steam generation as it takes advantage of the enthalpy of vaporization. Despite being extensively studied for decades, the fundamental understanding of evaporation, which is necessary for making full use of evaporation, remains limited up to date. It is in general difficult to experimentally characterize the interfacial heat and mass transfer during evaporation. In this thesis, we designed and microfabricated an ultrathin nanoporous membrane as an experimental platform to overcome some critical challenges including: (1) realizing accurate and yet non-invasive interface temperature measurement; (2) decoupling the interfacial transport resistance from the thermofluidic resistance in the liquid phase and the diffusion resistance in the vapor phase; and (3) mitigating the blockage risk of the liquid-vapor interface due to nonevaporative contaminants. Our nano device consisted of an ultrathin free-standing membrane (~200 nm thick) containing an array of nanopores (pore diameter ~100 nm). A gold layer deposited on the membrane served as an electric heater to induce evaporation as well as a resistive temperature detector to closely monitor the interface temperature. This configuration minimizes the thermofluidic resistance in the liquid and mitigates the contamination risk. We characterized evaporation from this nano device in air as well as pure vapor. We demonstrated interfacial heat fluxes of ~~500 W/cm² for evaporation in air, where we elucidated that the Maxwell- Stefan equation governed the overall transport instead of Fick's law, especially in the high flux regime. In vapor, we achieved kinetically limited evaporation with an interfacial heat transfer coefficient up to 54 kW/cm² K. We utilized the kinetic theory with the Boltzmann transport equation to model the evaporative transport. With both experiments and modeling, we demonstrated that the kinetic limit of evaporation is determined by the pressure ratio between the vapor in the far field and that generated by the interface. The improved fundamental understanding of evaporation that we gained indicates the significant promise of utilizing an ultrathin nanoporous design to achieve high heat fluxes for evaporation in thermal management, desalination, steam generation, and beyond.en_US
dc.description.statementofresponsibilityby Zhengmao Lu.en_US
dc.format.extent87 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleEvaporation from nanopores : probing interfacial transporten_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1057122271en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record