MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The power of randomized algorithms : from numerical linear algebra to biological systems

Author(s)
Musco, Cameron N. (Cameron Nicholas)
Thumbnail
DownloadFull printable version (26.71Mb)
Alternative title
From numerical linear algebra to biological systems
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Nancy A. Lynch.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis we study simple, randomized algorithms from a dual perspective. The first part of the work considers how randomized methods can be used to accelerate the solution of core problems in numerical linear algebra. In particular, we give a randomized low-rank approximation algorithm for positive semidefinite matrices that runs in sublinear time, significantly improving upon what is possible with traditional deterministic methods. We also discuss lower bounds on low-rank approximation and spectral summarization problems that attempt to explain the importance of randomization and approximation in accelerating linear algebraic computation. The second part of the work considers how the theory of randomized algorithms can be used more generally as a tool to understand how complexity emerges from low-level stochastic behavior in biological systems. We study population density- estimation in ant colonies, which is a key primitive in social decision-making and task allocation. We define a basic computational model and show how agents in this model can estimate their density using a simple random-walk-based algorithm. We also consider simple randomized algorithms for computational primitives in spiking neural networks, focusing on fast winner-take-all networks.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 323-347).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/120424
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.