MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Center for Global Change Science
  • Joint Program on the Science and Policy of Global Change Reports
  • View Item
  • DSpace@MIT Home
  • Center for Global Change Science
  • Joint Program on the Science and Policy of Global Change Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Turkish Energy Sector Development and the Paris Agreement Goals: A CGE Model Assessment

Author(s)
Kat, Bora; Paltsev, Sergey; Yuan, Mei
Thumbnail
DownloadMITJPSPGC_Rpt332.pdf (4.387Mb)
Metadata
Show full item record
Abstract
In the 2015 Paris Agreement, Turkey pledged to reduce greenhouse gas (GHG) emissions by 21% by 2030 relative to business-as-usual (BAU). However, Turkey currently relies heavily on imported energy and fossil-intensive power generation. Despite significant wind and solar energy potential, only 5.1% of its total power is generated by wind and solar installations; additionally, although two nuclear power stations are planned, no nuclear capacity currently exists. We expect that fulfilling Turkey’s Paris Agreement pledge will likely require a reduced reliance on fossil-based energy and additional investments in low-carbon energy sources, which may impact Turkey’s GDP, energy use, and electricity generation profiles. To fully assess these impacts, we develop a computable general equilibrium (CGE) model of the Turkish economy that combines macroeconomic representation of non-electric sectors with a detailed representation of the electricity sector. We analyze several scenarios to assess the impact of an emission trading scheme in Turkey: one including the planned nuclear development and a renewable subsidy scheme (BAU), and in the other with no nuclear technology allowed (NoN). Our assessment shows that in 2030, without policy, primary energy will be mainly oil, natural gas and coal. Under an emission trading scheme, however, coal-fired power generation vanishes by 2030 in both BAU and NoN due to the high cost of carbon. With nuclear (BAU), GHG emissions are 3.1% lower than NoN due to the resulting energy mix, allowing for a lower carbon price ($50/tCO2 in BAU compared to $70/tCO2 in NoN). Our results suggest that fulfillment of Turkey’s Paris Agreement pledge may be possible at a modest economic cost of about 0.8–1% by 2030.
Date issued
2018-07
URI
https://hdl.handle.net/1721.1/121479
Publisher
MIT Joint Program on the Science and Policy of Global Change
Citation
Report 332
Series/Report no.
MIT Joint Program Report Series;332

Collections
  • Joint Program on the Science and Policy of Global Change Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.