dc.contributor.advisor | John Heywood. | en_US |
dc.contributor.author | Weigl, Dustin. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Institute for Data, Systems, and Society. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Engineering Systems Division. | en_US |
dc.contributor.other | Technology and Policy Program. | en_US |
dc.date.accessioned | 2019-10-04T21:32:02Z | |
dc.date.available | 2019-10-04T21:32:02Z | |
dc.date.copyright | 2019 | en_US |
dc.date.issued | 2019 | en_US |
dc.date.issued | 2019 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/122394 | |
dc.description | Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2019 | en_US |
dc.description | Thesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Institute for Data, Systems, and Society, Technology and Policy Program, 2019 | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 50-53). | en_US |
dc.description.abstract | For decades, petroleum-based fuels have dominated as the primary energy source for the light duty vehicle (LDV) fleet in the United States and around most of the world. However, recent developments in alternative fuel vehicle (AFV) technology have led to viable alternatives to the traditional internal combustion engine. In particular, vehicles with zero tailpipe emissions including plug-in electric vehicles and fuel cell electric vehicles (FCEVs) powered by hydrogen fuel have the potential to greatly reduce transportation emissions. However, adoption of these vehicles has grown slowly for a number of reasons. One of the largest barriers to adoption is a chicken-or-egg problem; the interdependence between the adoption of AFVs and the expansion of a new network of refueling infrastructure to support them. This thesis examines the current status of refueling networks and AFV adoption around the world with a specific focus on the U.S. I specify the characteristics of the various impediments to AFV expansion including high purchase price, range anxiety, and consumer familiarity. I then present a series of sensitivity analyses examining the projected vehicle-infrastructure co-evolution using a system dynamics model parameterized for the United States private LDV fleet. For battery electric vehicles, the results indicate that steady growth in market share is possible, given continued investment and political support. Adoption of FCEVs, on the other hand, is likely to grow much more slowly and these vehicles may not enter the U.S. market at all unless supported by significant private investment or political intervention. However, significantly higher levels of adoption in concentrated areas may be possible in the simulated timeframe out to the year 2050. | en_US |
dc.description.statementofresponsibility | by Dustin Weigl. | en_US |
dc.format.extent | 62 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Civil and Environmental Engineering. | en_US |
dc.subject | Institute for Data, Systems, and Society. | en_US |
dc.subject | Engineering Systems Division. | en_US |
dc.subject | Technology and Policy Program. | en_US |
dc.title | Characterizing the evolution of the alternative fuel vehicle and infrastructure Nexus | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. in Transportation | en_US |
dc.description.degree | S.M. in Technology and Policy | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Institute for Data, Systems, and Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Engineering Systems Division | en_US |
dc.contributor.department | Technology and Policy Program | en_US |
dc.identifier.oclc | 1102780978 | en_US |
dc.description.collection | S.M.inTransportation Massachusetts Institute of Technology, Department of Civil and Environmental Engineering | en_US |
dc.description.collection | S.M.inTechnologyandPolicy Massachusetts Institute of Technology, Institute for Data, Systems, and Society, Technology and Policy Program | en_US |
dspace.imported | 2019-10-04T21:32:02Z | en_US |
mit.thesis.degree | Master | en_US |
mit.thesis.department | CivEng | en_US |