Show simple item record

dc.contributor.advisorDaniel Frey and John Carrier.en_US
dc.contributor.authorWu, Jessica Madison.en_US
dc.contributor.otherSloan School of Management.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2019-10-11T22:25:16Z
dc.date.available2019-10-11T22:25:16Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122597
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2019, In conjunction with the Leaders for Global Operations Program at MITen_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019, In conjunction with the Leaders for Global Operations Program at MITen_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 69).en_US
dc.description.abstractSHAPE Technologies is the world leader in ultra high pressure industrial waterjet systems for cutting and cleaning with applications from metal to food. Although SHAPE is the technological leader in this space, SHAPE must continuously look toward developing new capabilities to differentiate its products. SHAPE has historically outfitted its machines with a suite of sensors, however these systems in the field do not store the data, thereby losing the time series relationships and historical log of machine health. One opportunity is to create a connected platform that leverages this data to help SHAPE's customers move away from a break fix model to a predictive maintenance program. This project seeks to expand on a sensor connectivity proof of concept ("POC"), which the team successfully built on a prototype grade Raspberry Pi, and make the platform ready for customer beta trial. First, this project explores important infrastructure, legal, and supply chain challenges that impact the commercial business when connecting industrial equipment to the internet as well as the technological considerations to make the platform both backwards and forwards compatible. Second, this project helps define the minimum viable product requirements for industrial infrastructure and devices configuration. Third, this project merges the POC captured data and lab data to train and validate supervised machine learning models to predict failures several days in advance and demonstrates how such a system can help customers mitigate unplanned downtime.en_US
dc.description.statementofresponsibilityby Jessica Madison Wu.en_US
dc.format.extent69 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleDevelopment of a connected platform for industrial equipment monitoring to enable predictive maintenance using supervised machine learning methodsen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentLeaders for Global Operations Programen_US
dc.identifier.oclc1119537741en_US
dc.description.collectionM.B.A. Massachusetts Institute of Technology, Sloan School of Managementen_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2019-10-11T22:25:15Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record