Show simple item record

dc.contributor.advisorRoy Welsch and Daniel Frey.en_US
dc.contributor.authorNowak, Hans,II(Hans Antoon)en_US
dc.contributor.otherSloan School of Management.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2020-09-03T15:53:44Z
dc.date.available2020-09-03T15:53:44Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/126914
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 101-104).en_US
dc.description.abstractRaytheon's Circuit Card Assembly (CCA) factory in Andover, MA is Raytheon's largest factory and the largest Department of Defense (DOD) CCA manufacturer in the world. With over 500 operations, it manufactures over 7000 unique parts with a high degree of complexity and varying levels of demand. Recently, the factory has seen an increase in demand, making the ability to continuously analyze factory capacity and strategically plan for future operations much needed. This study seeks to develop a sustainable strategic capacity optimization model and capacity visualization tool that integrates demand data with historical manufacturing data. Through automated data mining algorithms of factory data sources, capacity utilization and overall equipment effectiveness (OEE) for factory operations are evaluated. Machine learning methods are then assessed to gain an accurate estimate of cycle time (CT) throughout the factory. Finally, a mixed-integer nonlinear program (MINLP) integrates the capacity utilization framework and machine learning predictions to compute the optimal strategic capacity planning decisions. Capacity utilization and OEE models are shown to be able to be generated through automated data mining algorithms. Machine learning models are shown to have a mean average error (MAE) of 1.55 on predictions for new data, which is 76.3% lower than the current CT prediction error. Finally, the MINLP is solved to optimality within a tolerance of 1.00e-04 and generates resource and production decisions that can be acted upon.en_US
dc.description.statementofresponsibilityby Hans Nowak II.en_US
dc.format.extent123 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleStrategic capacity planning using data science, optimization, and machine learningen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentLeaders for Global Operations Programen_US
dc.identifier.oclc1191623969en_US
dc.description.collectionM.B.A. Massachusetts Institute of Technology, Sloan School of Managementen_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2020-09-03T15:53:44Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record