Show simple item record

dc.contributor.advisorYanchong (Karen) Zheng and Kamal Youcef-Toumi.en_US
dc.contributor.authorAmlani, Ankur.en_US
dc.contributor.otherSloan School of Management.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2020-09-03T16:42:49Z
dc.date.available2020-09-03T16:42:49Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/126943
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020 7102 Sloan School of Management.en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 103-106).en_US
dc.description.abstractAs automation continues to gain prevalence within the retail industry, informed decision-making by users of robotic systems is critical for management of throughput and operating expenditures. On robotic fulfillment floors, obstructions such as fallen product and deactivated robots can degrade robotic floor throughput by blocking access to product, forcing robots to re-route, and increasing worker idle time. Workers can walk onto the floor to address obstructions during operation, but such entry affects robot movement and can undermine the original intention of restoring throughput. This project aims to provide insight into the cost-benefit tradeoff of resolving obstructions to enable task prioritization and reduce unnecessary floor entry during operation, thereby improving system performance and reducing operating costs. We introduce a novel framework for modeling floor entry to determine the "value" of resolving an obstruction and apply an agile approach to rapidly develop and pilot a software tool for delivery of model recommendations in the field. During the treatment shifts, z-scores of measured pick work unavailability (our chosen performance metric, for which a reduction is indicative of improved throughput), were -0.72, -1.04, and -0.16 as compared with a control sample of similar shifts. The approximate fraction of obstructions resolved during non-operation increased by a factor of three, with recommendation adherence measurements indicating that the increase was driven by elimination of unnecessary (as determined by the model) floor entries during operation. While the sample size was not large enough to achieve a statistically significant outcome, these results offer useful insights regarding future analytical work, testing, and associated organizational changes.en_US
dc.description.statementofresponsibilityby Ankur Amlani.en_US
dc.format.extent106 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleFloor entry task prioritization for highly automated fulfillment centersen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentLeaders for Global Operations Programen_US
dc.identifier.oclc1191619212en_US
dc.description.collectionM.B.A. Massachusetts Institute of Technology, Sloan School of Managementen_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2020-09-03T16:42:48Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record