Show simple item record

dc.contributor.advisorAnantha P. Chandrakasan.en_US
dc.contributor.authorLee, Kyungmi,(Computer scientist)Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-09-15T21:53:27Z
dc.date.available2020-09-15T21:53:27Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127350
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 89-93).en_US
dc.description.abstractDeep neural networks are known to be vulnerable to adversarial perturbations, which are often imperceptible to humans but can alter predictions of machine learning systems. Since the exact value of adversarial robustness is difficult to obtain for complex deep neural networks, accuracy of the models against perturbed examples generated by attack methods is empirically used as a proxy to adversarial robustness. However, failure of attack methods to find adversarial perturbations cannot be equated with being robust.en_US
dc.description.abstractIn this work, we identify three common cases that lead to overestimation of accuracy against perturbed examples generated by bounded first-order attack methods: 1) the value of cross-entropy loss numerically becoming zero when using standard floating point representation, resulting in non-useful gradients; 2) innately non-differentiable functions in deep neural networks, such as Rectified Linear Unit (ReLU) activation and MaxPool operation, incurring "gradient masking" [2]; and 3) certain regularization methods used during training inducing the model to be less amenable to first-order approximation. We show that these phenomena exist in a wide range of deep neural networks, and that these phenomena are not limited to specific defense methods they have been previously investigated for.en_US
dc.description.abstractFor each case, we propose compensation methods that either address sources of inaccurate gradient computation, such as numerical saturation for near zero values and non-differentiability, or reduce the total number of back-propagations for iterative attacks by approximating second-order information. These compensation methods can be combined with existing attack methods for a more precise empirical evaluation metric. We illustrate the impact of these three phenomena with examples of practical interest, such as benchmarking model capacity and regularization techniques for robustness. Furthermore, we show that the gap between adversarial accuracy and the guaranteed lower bound of robustness can be partially explained by these phenomena. Overall, our work shows that overestimated adversarial accuracy that is not indicative of robustness is prevalent even for conventionally trained deep neural networks, and highlights cautions of using empirical evaluation without guaranteed bounds.en_US
dc.description.statementofresponsibilityby Kyungmi Lee.en_US
dc.format.extent93 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleImproved methodology for evaluating adversarial robustness in deep neural networksen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1192484009en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-09-15T21:53:27Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record