Show simple item record

dc.contributor.advisorMathias Kolle.en_US
dc.contributor.authorNagelberg, Sara(Sara Nicole)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2020-09-25T20:03:33Z
dc.date.available2020-09-25T20:03:33Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127708
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 136-143).en_US
dc.description.abstractDynamic micro-optical components have revolutionized imaging, sensing, and display technologies. Multi-phase emulsions are micro-scale droplets formed from multiple immiscible material components suspended in a fluid medium. An interesting aspect of these droplets is that by tailoring the chemistry of the surrounding medium it is possible to control the droplet morphology or to render the droplets responsive to stimuli in the environment, including light, heat, specific molecules, or even bacteria. This thesis explores the optical characteristics of multi-phase droplets, including their refractive, emissive, and reflective properties. This work focuses predominantly on bi-phase droplets formed from two immiscible oils in water, which form double emulsions or Janus droplets. As tunable refractive components, these droplets form dynamic compound micro-lenses with adjustable focal length that is continuously variable from converging lenses to diverging lenses.en_US
dc.description.abstractMacroscopically these refractive droplets can appear nearly transparent or strongly scattering, depending on their configurations. When a fluorescent dye is dispersed within the higher refractive index phase, a portion of the light emitted will undergo total internal reflection. This results in a strong morphology-dependent angular emission profile, which can be used in molecular sensing for chemicals or pathogens. In reflection, the droplets produce striking iridescent colors. This is due to the interference light being totally internally reflected at the internal interface along distinct optical paths, leading to color. These optical characteristics are analyzed both experimentally and theoretically. Finite Difference Time Domain simulations were used to model wave-optical effects and phenomena that could be treated using geometrical optics were calculated using a custom-built ray tracing algorithm.en_US
dc.description.abstractAdditionally, a theoretical model was developed to explain the iridescent colors, under a geometric approximation that takes into account interference effects. Experimentally the droplets were characterized using several different custom-built microscope setups. Beyond the optical characteristics, we used these setups to investigate the effects of thermal Marangoni flows within the droplets, which cause the droplets to re-orient towards a heat source. This work sets the foundation of understanding the refractive, reflective, and emissive properties of multi-phase droplets, which could form the basis of dynamically controllable or stimuli-responsive micro-scale optical components.en_US
dc.description.statementofresponsibilityby Sara Nagelberg.en_US
dc.format.extent143 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDynamic and stimuli-responsive multi-phase emulsion droplets for optical componentsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1196833416en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2020-09-25T20:03:33Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record