Show simple item record

dc.contributor.advisorJu Li.en_US
dc.contributor.authorWang, Ziqiang,Ph. D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2020-09-25T20:04:16Z
dc.date.available2020-09-25T20:04:16Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127717
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2020en_US
dc.descriptionCataloged from the PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 104-107).en_US
dc.description.abstractSolid-state Li metal batteries require accommodation of electrochemically generated mechanical pressure inside Li metal. In this thesis it shows, through in situ transmission electron microscopy experiment of Li and Na deposition/stripping in mixed ionic-electronic conductor (MIEC) hollow tubules, an intriguing result that (a) Li metal can flow and retract inside 3D MIEC channels as a single crystal, (b) Coble creep dominates via interfacial diffusion along the MIEC/metal phase boundary, (c) this MIEC electrochemical tubular matrix can effectively relieve stress, maintain electronic and ionic contact, eliminate solid-electrolyte interphase (SEI) debris, reduce the possibility of "dead lithium", and allow the reversible deposition/stripping of Li metal across a distance of many microns, for 100 cycles. This thesis proposes quantitative design rules for MIEC electrochemical cell and shows that interfacial diffusion greatly liberates MIEC material choices when using ~100 nm wide and 10-100[mu]m deep channels. A centimeter-scale, ~10¹⁰ MIEC cylinders/solid electrolyte/LiFePO₄ full cell shows high capacity of ~ 164 mAh/g(LiFePO₄ and almost no degradation for over 50 cycles, starting with 1x excess Li.en_US
dc.description.statementofresponsibilityby Ziqiang Wang.en_US
dc.format.extent107 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleLithium deposition and stripping in solid-state battery via coble creepen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.identifier.oclc1196094760en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Materials Science and Engineeringen_US
dspace.imported2020-09-25T20:04:12Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMatScien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record