Show simple item record

dc.contributor.advisorNicolas G. Hadjiconstantinou.en_US
dc.contributor.authorSwisher, Mathew M.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2021-01-05T23:15:14Z
dc.date.available2021-01-05T23:15:14Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129046
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 103-111).en_US
dc.description.abstractDiamond like carbon (DLC) is an attractive choice as a coating for mechanical components, because of its excellent wear resistance and very low coefficient of friction . We use molecular dynamics (MD) simulations with a reactive force field (ReaxFF) to study the friction and wear between DLC counterfaces, both in comparison to and in contact with steel counterfaces. We show that the tribological properties of DLC in dry sliding friction are heavily dependent on both the structure of the DLC as well as the passivation layer that forms on the sliding counterfaces under different environmental conditions, and that when optimizing for the lowest COF the best structure for the DLC depends on the type of passivation layer. We also find that, by preventing bonding across the counterfaces as the thin film of lubricant is squeezed out at the point of contact, the passivation layer is instrumental in the material's ability to resist scuffing and wear. Additionally, we find that the strength and hardness of DLC makes damaging the passivation layer due to contact forces unlikely under real world conditions. Finally, we use MD simulations to study in more detail the transition from lubricated to dry friction, and in particular, the role of DLC surface chemistry and the resulting passivation layer in this transition. Our work shows that the frictional force can be described quite accurately across the transition from pure slip ( dry friction) to the purely hydrodynamic regime using a simple model which superposes the two effects, provided it also accounts for any immobile fluid layers at the fluid-solid interface. We show that, for water lubrication, the transition from the pure slip to the purely hydrodynamic regime occurs at smaller lengthscales in DLC counterfaces compared with steel.en_US
dc.description.statementofresponsibilityby Matthew M. Swisher.en_US
dc.format.extent111 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleA molecular dynamics study of the tribological properties of diamond like carbonen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1227042771en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2021-01-05T23:15:10Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record