MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Instruction-level power consumption simulator for modeling simple timing and power side channels in a 32-bit RISC-V micro-processor

Author(s)
Fang, Gloria(Gloria Yu Liang)
Thumbnail
Download1251779526-MIT.pdf (1.198Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Anantha Chandrakasan.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We create a Python based RISC-V simulator that is capable of simulating any assembly code written in RISC-V, and even perform simple power analysis of RISC-V designs. The power consumption of non-privileged RISC-V RV32IM instructions are measured experimentally, forming the basis for our simulator. These instructions include memory loads and stores, PC jumps and branches, as well as arithmetic instructions with register values. The object-oriented simulator also supports stepping and debugging. In the context of designing software for hardware use, the simulator helps assess vulnerability to side channel attacks by accepting input power consumption values. The power consumption graph of any disassembled RISC-V code can be obtained if the power consumption of each instruction is given as an input; then, from the output power consumption waveforms, we can assess how vulnerable a system is to side channel attacks. Because the power values can be customized based on what's experimentally measured, this means that our simulator can be applied to any disassembled code and to any system as long as the input power consumption of each instruction is supplied. Finally, we demonstrate an example application of the simulator on a pseudorandom function for simple side channel power analysis.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 139-140).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130686
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.