MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transposable elements and the regulatory logic of hematopoietic differentiation

Author(s)
Najia, Mohamad Ali
Thumbnail
DownloadThesis PDF (17.27Mb)
Advisor
Daley, George Q.
Blainey, Paul C.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The temporal regulation of gene expression by transcription factors, chromatin modifiers and cis-regulatory elements is central to establish cellular identity and function. Understanding this regulatory logic is critical for deriving select cell types in vitro for translational applications. The human hematopoietic system has long been a model system and an important source for adoptive cell therapies, yet, our understanding of the regulatory mechanisms that elicit commitment toward distinct hematopoietic lineages is continuously evolving. In this thesis, I describe several studies on transposable elements (TEs) as natural and engineered sources of regulatory innovation that contribute to, and aid in the investigation of, dynamic cellular processes. Toward this end, I built comprehensive genome-wide enhancer-gene maps spanning the human hematopoietic system and identified that TEs in the human genome contribute to the transcriptional networks regulating lymphoid cells. De-repression of TEs in hematopoietic stem cells, enacted via modulation of TE chromatin silencing machinery, facilitates the development of natural killer (NK) cells during lymphoid differentiation. Specifically, knockout of the H3K9 methyltransferase EHMT1 or transcriptional co-repressor TRIM28 induced NK-fated progenitors that ultimately generated NK cells with diverse effector properties. We further leveraged TEs by repurposing the packaging function of the MLV gag polyprotein to create a non-destructive reporter of the transcriptional states of living cells, enabling the measurement of dynamic transcriptional processes. Through engineering and scientific inquiry, I established the utility of TEs as synthetic biology tools, furthering our understanding of hematopoietic lineage decisions and highlighting that modulation of TEs can be enabling for hematopoietic cell engineering.
Date issued
2023-02
URI
https://hdl.handle.net/1721.1/150055
Department
Harvard-MIT Program in Health Sciences and Technology
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.