MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Biomolecular Interactions with Generative Models

Author(s)
Corso, Gabriele
Thumbnail
DownloadThesis PDF (25.88Mb)
Advisor
Jaakkola, Tommi S.
Barzilay, Regina
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
In 2021, DeepMind’s AlphaFold2 revolutionized single-chain protein structure prediction achieving atomic accuracy, solving a longstanding challenge in biology. However, understanding biomolecular interactions, a critical problem for advancing drug discovery and biological research, remained unsolved. This thesis presents our research to redefine the machine learning approach to this problem, modeling structures with a new generative paradigm and tailoring the neural architectures and learning tasks to the specific challenges that arose. These ideas combined with significant engineering efforts led us to develop a class of open-source models from DiffDock to the recent Boltz-1. These have significantly pushed our ability to understand biomolecular interactions, they have been widely adopted in industry and academia to help with drug development and protein design and they have opened the door to new research paradigms to push biological research further.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/164058
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.